scispace - formally typeset
Search or ask a question
Author

R. James

Bio: R. James is an academic researcher from Royal Melbourne Hospital. The author has contributed to research in topics: Homeobox & Embryonic stem cell. The author has an hindex of 1, co-authored 1 publications receiving 424 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Cdx‐2 is transcribed well before any other membrane of the Cad homologue group and of the related Hox‐C group; its expression in the extra‐embryonic membranes and in the hindgut reflects the phylogenetic relationship between the cloaca and the chorio‐allantois and suggests the possibility that homeobox genes may be involved in placental development and/or patterning.
Abstract: Three mouse homologues of the Drosophila homeotic gene Caudal (Cad) have been described. They are currently designated Cdx-1, Cdx-2, and Cdx-4. Cdx-1 and 2 are both strongly expressed in the adult mid- and hindgut, while Cdx-1 and 4 have been shown to be activated in the embryonic primitive streak. Using a polyclonal antibody against a fusion protein containing the amino terminal 109 amino acids of murine Cdx-2, we here describe the topographical location of the gene product from early cleavage to 12.5 days of embryonic development. Cdx-2 expression begins at 3.5 days and is confined to the trophectoderm, being absent from the inner cell mass. Subsequently, staining is located in the extra-embryonic ectoderm adjacent to the epiblast, but sparing the more superficially placed polar, as well as the mural trophoblastic cells. Continuing expression in the fetal membranes involves the chorion, the allantoic bud, and, at even later stages, the spongiotrophoblast. From 8.5 days, Cdx-2 begins to be expressed in embryonic tissues, principally (unlike Cdx-1) in the posterior part of the gut from its earliest formation, as well as in the tail bud and in the caudal part of the neural tube. Cdx-2 is, therefore, transcribed well before any other membrane of the Cad homologue group and of the related Hox-C group; its expression in the extra-embryonic membranes and in the hindgut reflects the phylogenetic relationship between the cloaca and the chorio-allantois and suggests the possibility that homeobox genes may be involved in placental development and/or patterning. © 1995 wiley-Liss, Inc.

433 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A role is established for Oct-3/4 as a master regulator of pluripotency that controls lineage commitment and the sophistication of critical transcriptional regulators is illustrated and the consequent importance of quantitative analyses are illustrated.
Abstract: Cell fate during development is defined by transcription factors that act as molecular switches to activate or repress specific gene expression programmes. The POU transcription factor Oct-3/4 (encoded by Pou5f1) is a candidate regulator in pluripotent and germline cells and is essential for the initial formation of a pluripotent founder cell population in the mammalian embryo. Here we use conditional expression and repression in embryonic stem (ES) cells to determine requirements for Oct-3/4 in the maintenance of developmental potency. Although transcriptional determination has usually been considered as a binary on-off control system, we found that the precise level of Oct-3/4 governs three distinct fates of ES cells. A less than twofold increase in expression causes differentiation into primitive endoderm and mesoderm. In contrast, repression of Oct-3/4 induces loss of pluripotency and dedifferentiation to trophectoderm. Thus a critical amount of Oct-3/4 is required to sustain stem-cell self-renewal, and up- or downregulation induce divergent developmental programmes. Our findings establish a role for Oct-3/4 as a master regulator of pluripotency that controls lineage commitment and illustrate the sophistication of critical transcriptional regulators and the consequent importance of quantitative analyses.

3,745 citations

Journal ArticleDOI
11 Dec 1998-Science
TL;DR: A culture of mouse blastocysts or early postimplantation trophoblasts in the presence of fibroblast growth factor 4 (FGF4) permitted the isolation of permanent trophoblast stem cell lines that exclusively contributed to the trophoplast lineage in vivo in chimeras.
Abstract: The trophoblast cell lineage is essential for the survival of the mammalian embryo in utero. This lineage is specified before implantation into the uterus and is restricted to form the fetal portion of the placenta. A culture of mouse blastocysts or early postimplantation trophoblasts in the presence of fibroblast growth factor 4 (FGF4) permitted the isolation of permanent trophoblast stem cell lines. These cell lines differentiated to other trophoblast subtypes in vitro in the absence of FGF4 and exclusively contributed to the trophoblast lineage in vivo in chimeras.

1,294 citations

Journal ArticleDOI
02 Dec 2005-Cell
TL;DR: It is shown that the differentiation of TE cells can be mimicked by overexpression of Caudal-related homeobox 2 (Cdx2), which is sufficient to generate proper trophoblast stem (TS) cells and suggests that reciprocal inhibition between lineage-specific transcription factors might be involved in the first differentiation event of mammalian development.

1,180 citations

Journal ArticleDOI
TL;DR: Cdx2 is essential for segregation of the ICM and TE lineages at the blastocyst stage by ensuring repression of Oct4 and Nanog in the TE.
Abstract: Blastocyst formation marks the segregation of the first two cell lineages in the mammalian preimplantation embryo: the inner cell mass (ICM) that will form the embryo proper and the trophectoderm (TE) that gives rise to the trophoblast lineage. Commitment to ICM lineage is attributed to the function of the two transcription factors, Oct4 (encoded by Pou5f1) and Nanog. However, a positive regulator of TE cell fate has not been described. The T-box protein eomesodermin (Eomes) and the caudal-type homeodomain protein Cdx2 are expressed in the TE, and both Eomes and Cdx2 homozygous mutant embryos die around the time of implantation. A block in early TE differentiation occurs in Eomes mutant blastocysts. However, Eomes mutant blastocysts implant, and Cdx2 and Oct4 expression are correctly restricted to the ICM TE. Blastocoel formation initiates in Cdx2 mutants but epithelial integrity is not maintained and embryos fail to implant. Loss of Cdx2 results in failure to downregulate Oct4 and Nanog in outer cells of the blastocyst and subsequent death of those cells. Thus, Cdx2 is essential for segregation of the ICM and TE lineages at the blastocyst stage by ensuring repression of Oct4 and Nanog in the TE.

1,078 citations

Journal ArticleDOI
TL;DR: These findings indicate an important role of Sox17 in endoderm development in the mouse, highlighting the idea that the molecular mechanism for endODerm formation is likely to be conserved among vertebrates.
Abstract: In the mouse, the definitive endoderm is derived from the epiblast during gastrulation, and, at the early organogenesis stage, forms the primitive gut tube, which gives rise to the digestive tract, liver, pancreas and associated visceral organs. The transcription factors, Sox17 (a Sry-related HMG box factor) and its upstream factors, Mixer (homeobox factor) and Casanova (a novel Sox factor), have been shown to function as endoderm determinants in Xenopus and zebrafish, respectively. However, whether the mammalian orthologues of these genes are also involved with endoderm formation is not known. We show that Sox17(-/-) mutant embryos are deficient of gut endoderm. The earliest recognisable defect is the reduced occupancy by the definitive endoderm in the posterior and lateral region of the prospective mid- and hindgut of the headfold-stage embryo. The prospective foregut develops properly until the late neural plate stage. Thereafter, elevated levels of apoptosis lead to a reduction in the population of the definitive endoderm in the foregut. In addition, the mid- and hindgut tissues fail to expand. These are accompanied by the replacement of the definitive endoderm in the lateral region of the entire length of the embryonic gut by cells that resemble the visceral endoderm. In the chimeras, although Sox17-null ES cells can contribute unrestrictedly to ectodermal and mesodermal tissues, few of them could colonise the foregut endoderm and they are completely excluded from the mid- and hindgut endoderm. Our findings indicate an important role of Sox17 in endoderm development in the mouse, highlighting the idea that the molecular mechanism for endoderm formation is likely to be conserved among vertebrates.

722 citations