scispace - formally typeset
Search or ask a question
Author

R. Jonas A. Nilsson

Other affiliations: VU University Medical Center
Bio: R. Jonas A. Nilsson is an academic researcher from Umeå University. The author has contributed to research in topics: Cancer & RNA. The author has an hindex of 9, co-authored 12 publications receiving 1228 citations. Previous affiliations of R. Jonas A. Nilsson include VU University Medical Center.
Topics: Cancer, RNA, Platelet, Centrosome, Gene silencing

Papers
More filters
Journal ArticleDOI
TL;DR: The results indicate that blood platelets provide a valuable platform for pan-cancer, multiclass cancer, and companion diagnostics, possibly enabling clinical advances in blood-based “liquid biopsies”.

640 citations

Journal ArticleDOI
29 Sep 2011-Blood
TL;DR: It is demonstrated that tumor cells transfer (mutant) RNA into blood platelets in vitro and in vivo, and it is shown that platelets isolated from glioma and prostate cancer patients contain the cancer-associated RNA biomarkers EGFRvIII and PCA3, respectively.

314 citations

Journal ArticleDOI
TL;DR: It is demonstrated that particle-swarm optimization-enhanced algorithms enable efficient selection of RNA biomarker panels from platelet RNA-sequencing libraries to diagnose cancer from TEPs, suggesting that swarm intelligence may also benefit the optimization of diagnostics readout of other liquid biopsy biosources.

221 citations

Journal ArticleDOI
TL;DR: Platelets are a valuable source for the non-invasive detection of EML4-ALK rearrangements and may prove useful for predicting and monitoring outcome to crizotinib, thereby improving clinical decisions based on radiographic imaging alone.
Abstract: // R. Jonas A. Nilsson 1,2,3,* , Niki Karachaliou 4,* , Jordi Berenguer 1 , Ana Gimenez-Capitan 5 , Pepijn Schellen 1,3 , Cristina Teixido 5 , Jihane Tannous 6 , Justine L. Kuiper 7 , Esther Drees 1 , Magda Grabowska 1 , Marte van Keulen 6 , Danielle A. M. Heideman 8 , Erik Thunnissen 8 , Anne-Marie C. Dingemans 9 , Santiago Viteri 4 , Bakhos A. Tannous 6 , Ana Drozdowskyj 10 , Rafael Rosell 4,5,11,12,** , Egbert F. Smit 7,** and Thomas Wurdinger 1,3,6,** 1 Cancer Center Amsterdam, Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands 2 Department of Radiation Sciences, Oncology, Umea University, Umea, Sweden 3 ThromboDx B.V., Amsterdam, The Netherlands 4 Translational Research Unit, Dr, Rosell Oncology Institute, Quiron Dexeus University Hospital, Barcelona, Spain 5 Pangaea Biotech SL, Barcelona, Spain 6 Department of Neurology, Massachusetts General Hospital and Neuroscience Program, Harvard Medical School, Boston, MA, USA 7 Cancer Center Amsterdam, Department of Pulmonary Diseases, VU University Medical Center, Amsterdam, The Netherlands 8 Cancer Center Amsterdam, Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands 9 Department of Pulmonary Diseases, Maastricht University Medical Center, Maastricht, The Netherlands 10 Pivotal, Madrid, Spain 11 Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Barcelona, Spain 12 Molecular Oncology Research (MORe) Foundation, Barcelona, Spain * These two authors are co-first authors of the manuscript ** These three authors are co-senior authors of the manuscript Correspondence to: Thomas Wurdinger, email: // Keywords : diagnostics, NSCLC, liquid biopsies, platelets, EML4-ALK Received : August 23, 2015 Accepted : October 06, 2015 Published : November 02, 2015 Abstract Purpose: Non-small-cell lung cancers harboring EML4-ALK rearrangements are sensitive to crizotinib. However, despite initial response, most patients will eventually relapse, and monitoring EML4-ALK rearrangements over the course of treatment may help identify these patients. However, challenges associated with serial tumor biopsies have highlighted the need for blood-based assays for the monitoring of biomarkers. Platelets can sequester RNA released by tumor cells and are thus an attractive source for the non-invasive assessment of biomarkers. Methods: EML4-ALK rearrangements were analyzed by RT-PCR in platelets and plasma isolated from blood obtained from 77 patients with non-small-cell lung cancer, 38 of whom had EML4-ALK-rearranged tumors. In a subset of 29 patients with EML4-ALK-rearranged tumors who were treated with crizotinib, EML4-ALK rearrangements in platelets were correlated with progression-free and overall survival. Results: RT-PCR demonstrated 65% sensitivity and 100% specificity for the detection of EML4-ALK rearrangements in platelets. In the subset of 29 patients treated with crizotinib, progression-free survival was 3.7 months for patients with EML4-ALK+ platelets and 16 months for those with EML4-ALK− platelets (hazard ratio, 3.5; P = 0.02). Monitoring of EML4-ALK rearrangements in the platelets of one patient over a period of 30 months revealed crizotinib resistance two months prior to radiographic disease progression. Conclusions: Platelets are a valuable source for the non-invasive detection of EML4-ALK rearrangements and may prove useful for predicting and monitoring outcome to crizotinib, thereby improving clinical decisions based on radiographic imaging alone.

162 citations

Journal ArticleDOI
28 Jan 2011-PLOS ONE
TL;DR: By identifying a pro-angiogenic VEGF/miR-101/EZH2 axis in endothelial cells, this work provides evidence for a functional link between growth factor-mediated signaling, post-transcriptional silencing, and histone-methylation in the angiogenesis process.
Abstract: Angiogenesis is a balanced process controlled by pro- and anti-angiogenic molecules of which the regulation is not fully understood. Besides classical gene regulation, miRNAs have emerged as post-transcriptional regulators of angiogenesis. Furthermore, epigenetic changes caused by histone-modifying enzymes were shown to modulate angiogenesis as well. However, a possible interplay between miRNAs and histone-modulating enzymes during angiogenesis has not been described. Here we show that VEGF-mediated down-regulation of miR-101 caused pro-angiogenic effects. We found that the pro-angiogenic effects are partly mediated through reduced repression by miR-101 of the histone-methyltransferase EZH2, a member of the Polycomb group family, thereby increasing methylation of histone H3 at lysine 27 and transcriptome alterations. In vitro, the sprouting and migratory properties of primary endothelial cell cultures were reduced by inhibiting EZH2 through up-regulation of miR-101, siRNA-mediated knockdown of EZH2, or treatment with 3-Deazaneplanocin-A (DZNep), a small molecule inhibitor of EZH2 methyltransferase activity. In addition, we found that systemic DZNep administration reduced the number of blood vessels in a subcutaneous glioblastoma mouse model, without showing adverse toxicities. Altogether, by identifying a pro-angiogenic VEGF/miR-101/EZH2 axis in endothelial cells we provide evidence for a functional link between growth factor-mediated signaling, post-transcriptional silencing, and histone-methylation in the angiogenesis process. Inhibition of EZH2 may prove therapeutic in diseases in which aberrant vascularization plays a role.

107 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The need for standardization of specimen handling, appropriate normative controls, and isolation and analysis techniques to facilitate comparison of results is emphasized, and it is recognized that continual development and evaluation of techniques will be necessary as new knowledge is amassed.
Abstract: The emergence of publications on extracellular RNA (exRNA) and extracellular vesicles (EV) has highlighted the potential of these molecules and vehicles as biomarkers of disease and therapeutic targets. These findings have created a paradigm shift, most prominently in the field of oncology, prompting expanded interest in the field and dedication of funds for EV research. At the same time, understanding of EV subtypes, biogenesis, cargo and mechanisms of shuttling remains incomplete. The techniques that can be harnessed to address the many gaps in our current knowledge were the subject of a special workshop of the International Society for Extracellular Vesicles (ISEV) in New York City in October 2012. As part of the “ISEV Research Seminar: Analysis and Function of RNA in Extracellular Vesicles (evRNA)”, 6 round-table discussions were held to provide an evidence-based framework for isolation and analysis of EV, purification and analysis of associated RNA molecules, and molecular engineering of EV for therapeutic intervention. This article arises from the discussion of EV isolation and analysis at that meeting. The conclusions of the round table are supplemented with a review of published materials and our experience. Controversies and outstanding questions are identified that may inform future research and funding priorities. While we emphasize the need for standardization of specimen handling, appropriate normative controls, and isolation and analysis techniques to facilitate comparison of results, we also recognize that continual development and evaluation of techniques will be necessary as new knowledge is amassed. On many points, consensus has not yet been achieved and must be built through the reporting of well-controlled experiments. Keywords: extracellular vesicle; exosome; microvesicle; standardization; isolation (Published: 27 May 2013) Citation: Journal of Extracellular Vesicles 2013, 2 : 20360 - http://dx.doi.org/10.3402/jev.v2i0.20360

1,840 citations

Journal ArticleDOI
TL;DR: The field is now in an exciting transitional period in which ctDNA analysis is beginning to be applied clinically, although there is still much to learn about the biology of cell-free DNA.
Abstract: Improvements in genomic and molecular methods are expanding the range of potential applications for circulating tumour DNA (ctDNA), both in a research setting and as a 'liquid biopsy' for cancer management. Proof-of-principle studies have demonstrated the translational potential of ctDNA for prognostication, molecular profiling and monitoring. The field is now in an exciting transitional period in which ctDNA analysis is beginning to be applied clinically, although there is still much to learn about the biology of cell-free DNA. This is an opportune time to appraise potential approaches to ctDNA analysis, and to consider their applications in personalized oncology and in cancer research.

1,630 citations

Journal ArticleDOI
TL;DR: This review focuses on key areas of clinical applications of CTCs and ctDNA, including detection of cancer, prediction of prognosis in patients with curable disease, monitoring systemic therapies, and stratification of patients based on the detection of therapeutic targets or resistance mechanisms.
Abstract: “Liquid biopsy” focusing on the analysis of circulating tumor cells (CTC) and circulating cell-free tumor DNA (ctDNA) in the blood of patients with cancer has received enormous attention because of its obvious clinical implications for personalized medicine. Analyses of CTCs and ctDNA have paved new diagnostic avenues and are, to date, the cornerstones of liquid biopsy diagnostics. The present review focuses on key areas of clinical applications of CTCs and ctDNA, including detection of cancer, prediction of prognosis in patients with curable disease, monitoring systemic therapies, and stratification of patients based on the detection of therapeutic targets or resistance mechanisms. Significance: The application of CTCs and ctDNA for the early detection of cancer is of high public interest, but it faces serious challenges regarding specificity and sensitivity of the current assays. Prediction of prognosis in patients with curable disease can already be achieved in several tumor entities, particularly in breast cancer. Monitoring the success or failure of systemic therapies (i.e., chemotherapy, hormonal therapy, or other targeted therapies) by sequential measurements of CTCs or ctDNA is also feasible. Interventional studies on treatment stratification based on the analysis of CTCs and ctDNA are needed to implement liquid biopsy into personalized medicine. Cancer Discov; 6(5); 479–91. ©2016 AACR.

1,055 citations

Journal ArticleDOI
TL;DR: A unifying perspective is synthesized that the promotion of cancer arises from disruption of the role of EZH2 as a master regulator of transcription.
Abstract: Recent genomic studies have resulted in an emerging understanding of the role of chromatin regulators in the development of cancer. EZH2, a histone methyl transferase subunit of a Polycomb repressor complex, is recurrently mutated in several forms of cancer and is highly expressed in numerous others. Notably, both gain-of-function and loss-of-function mutations occur in cancers but are associated with distinct cancer types. Here we review the spectrum of EZH2-associated mutations, discuss the mechanisms underlying EZH2 function, and synthesize a unifying perspective that the promotion of cancer arises from disruption of the role of EZH2 as a master regulator of transcription. We further discuss EZH2 inhibitors that are now showing early signs of promise in clinical trials and also additional strategies to combat roles of EZH2 in cancer.

1,047 citations

Journal ArticleDOI
TL;DR: A review of the biophysical properties and physiological functions of extracellular vesicles, particularly their pro-metastatic effects, and highlight the utility of EVs for the development of cancer diagnostics and therapeutics can be found in this paper.
Abstract: The sustained growth, invasion, and metastasis of cancer cells depend upon bidirectional cell-cell communication within complex tissue environments. Such communication predominantly involves the secretion of soluble factors by cancer cells and/or stromal cells within the tumour microenvironment (TME), although these cell types have also been shown to export membrane-encapsulated particles containing regulatory molecules that contribute to cell-cell communication. These particles are known as extracellular vesicles (EVs) and include species of exosomes and shed microvesicles. EVs carry molecules such as oncoproteins and oncopeptides, RNA species (for example, microRNAs, mRNAs, and long non-coding RNAs), lipids, and DNA fragments from donor to recipient cells, initiating profound phenotypic changes in the TME. Emerging evidence suggests that EVs have crucial roles in cancer development, including pre-metastatic niche formation and metastasis. Cancer cells are now recognized to secrete more EVs than their nonmalignant counterparts, and these particles can be isolated from bodily fluids. Thus, EVs have strong potential as blood-based or urine-based biomarkers for the diagnosis, prognostication, and surveillance of cancer. In this Review, we discuss the biophysical properties and physiological functions of EVs, particularly their pro-metastatic effects, and highlight the utility of EVs for the development of cancer diagnostics and therapeutics.

925 citations