scispace - formally typeset
Search or ask a question
Author

R. K. Guy

Bio: R. K. Guy is an academic researcher from Scripps Research Institute. The author has contributed to research in topics: Ring (chemistry) & Taxus brevifolia. The author has an hindex of 18, co-authored 33 publications receiving 2567 citations. Previous affiliations of R. K. Guy include University of California, San Diego.

Papers
More filters
Journal ArticleDOI
17 Feb 1994-Nature
TL;DR: The total synthesis of taxol is reported by a convergent strategy, which opens a chemical pathway for the production of both the natural product itself and a variety of designed taxoids.
Abstract: Taxol, a substance originally isolated from the Pacific yew tree (Taxus brevifolia) more than two decades ago, has recently been approved for the clinical treatment of cancer patients. Hailed as having provided one of the most significant advances in cancer therapy, this molecule exerts its anticancer activity by inhibiting mitosis through enhancement of the polymerization of tubulin and consequent stabilization of microtubules. The scarcity of taxol and the ecological impact of harvesting it have prompted extension searches for alternative sources including semisynthesis, cellular culture production and chemical synthesis. The latter has been attempted for almost two decades, but these attempts have been thwarted by the magnitude of the synthetic challenge. Here we report the total synthesis of taxol by a convergent strategy, which opens a chemical pathway for the production of both the natural product itself and a variety of designed taxoids.

976 citations

Journal ArticleDOI
TL;DR: This account attempts to bring together in a cogent overview the chemistry and biology of taxol, one of the few organic compounds, which, like benzene and aspirin, is recognizable by name to the average citizen.
Abstract: One can view plants as a reference library of compounds waiting to be searched by a chemist who is looking for a particular property. Taxol, a complex polyoxygenated diterpene isolated from the Pacific Yew, Taxus brevifolia, was discovered during extensive screening of plant materials for antineoplastic agents during the late 1960s. Over the last two decades, interest in and research related to taxol has slowly grown to the point that the popular press now seems poised to scoop each new development. What was once an obscure compound, of interest only to the most masochistic of synthetic chemists and an equally small number of cellular biologists, has become one of the few organic compounds, which, like benzene and aspirin, is recognizable by name to the average citizen. In parallel, the scientific study of taxol has blossomed. Physicians are currently studying its effects on nearly every known neoplasm. Biologists are using taxol to study the mechanisms of cell function by observing the effects of its interactions with the cellular skeletal systems. Synthetic chemists, absorbed by the molecule's unique and sensitive structure and functionality, are exploring seemingly every available pathway for its synthesis. Indeed, the demand for taxol has risen so in the last five years that alternative sources to the extraction of T. brevifolia are being vigorously pursued. Because of the rapidly expanding scope of research in the multifaceted study of taxol, those who are interested in the field may find acquisition of a reasonable base of knowledge an arduous task. For this reason, this account attempts to bring together, for the first time, in a cogent overview the chemistry and biology of this unique molecule.

554 citations

Journal ArticleDOI
TL;DR: In this paper, a successful strategy for the enantioselective synthesis of the natural stereoisomer of Taxol has been developed, which utilized the convergent assembly of the central eight-membered B ring from preformed synthons for rings A (10) and C (9) followed by late introduction of the D ring and side chain.
Abstract: A successful strategy for the enantioselective synthesis of the natural stereoisomer of Taxol (1) has been developed. This strategy utilized the convergent assembly of Taxol's central eight-membered B ring from preformed synthons for rings A (10) and C (9) followed by late introduction of the D ring and side chain. Degradative studies conf i ied the viability of certain crucial manipulations including oxidation of the C13 position (35 3) and regioselective introduction of the C I-hydroxyl, CZbenzoyloxy moiety (29 31). Additionally, a convenient method for the large-scale production of 29, a derivative useful for C2 analog production, was developed.

149 citations


Cited by
More filters
01 Dec 1991
TL;DR: In this article, self-assembly is defined as the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds.
Abstract: Molecular self-assembly is the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds. Molecular self-assembly is ubiquitous in biological systems and underlies the formation of a wide variety of complex biological structures. Understanding self-assembly and the associated noncovalent interactions that connect complementary interacting molecular surfaces in biological aggregates is a central concern in structural biochemistry. Self-assembly is also emerging as a new strategy in chemical synthesis, with the potential of generating nonbiological structures with dimensions of 1 to 10(2) nanometers (with molecular weights of 10(4) to 10(10) daltons). Structures in the upper part of this range of sizes are presently inaccessible through chemical synthesis, and the ability to prepare them would open a route to structures comparable in size (and perhaps complementary in function) to those that can be prepared by microlithography and other techniques of microfabrication.

2,591 citations

Journal ArticleDOI
TL;DR: In this Review, highlights of a number of selected syntheses are discussed, demonstrating the enormous power of these processes in the art of total synthesis and underscore their future potential in chemical synthesis.
Abstract: In studying the evolution of organic chemistry and grasping its essence, one comes quickly to the conclusion that no other type of reaction plays as large a role in shaping this domain of science than carbon-carbon bond-forming reactions. The Grignard, Diels-Alder, and Wittig reactions are but three prominent examples of such processes, and are among those which have undeniably exercised decisive roles in the last century in the emergence of chemical synthesis as we know it today. In the last quarter of the 20th century, a new family of carbon-carbon bond-forming reactions based on transition-metal catalysts evolved as powerful tools in synthesis. Among them, the palladium-catalyzed cross-coupling reactions are the most prominent. In this Review, highlights of a number of selected syntheses are discussed. The examples chosen demonstrate the enormous power of these processes in the art of total synthesis and underscore their future potential in chemical synthesis.

2,268 citations

Journal ArticleDOI
TL;DR: In this paper, highly crystalline monoclinic and tetragonal BiVO4 photocatalysts were obtained by the reaction of layered potassium vanadate powder (KV3O8 and K3V5O14) with Bi(NO3)3 for 3 days in aqueous media at room temperature.
Abstract: BiVO4 photocatalysts for O2 evolution, which work under visible light irradiation, were prepared by an aqueous process. The BiVO4 photocatalysts were obtained by the reaction of layered potassium vanadate powder (KV3O8 and K3V5O14) with Bi(NO3)3 for 3 days in aqueous media at room temperature. Highly crystalline monoclinic and tetragonal BiVO4 were selectively synthesized by changing the ratio of vanadium to bismuth in the starting materials. X-ray diffraction and scanning electron microscopy measurements showed that the monoclinic BiVO4 was formed via a tetragonal BiVO4 intermediate. Tetragonal BiVO4 with a 2.9 eV band gap mainly possessed an ultraviolet absorption band while monoclinic BiVO4 with a 2.4 eV band gap had a characteristic visible light absorption band in addition to the UV band. The UV bands observed in the tetragonal and monoclinic BiVO4 were assigned to the band transition from O2p to V3d whereas the visible light absorption was due to the transition from a valence band formed by Bi6s or ...

1,761 citations

Journal ArticleDOI
TL;DR: While the intrinsic complexity of natural product-based drug discovery necessitates highly integrated interdisciplinary approaches, the reviewed scientific developments, recent technological advances, and research trends clearly indicate that natural products will be among the most important sources of new drugs in the future.

1,760 citations

Journal ArticleDOI
TL;DR: The screening of a range of botanical species and marine organisms has yielded promising new antitubulin agents with novel properties, and the three main objectives are enhanced tumour specificity, reduced neurotoxicity and insensitivity to chemoresistance mechanisms.
Abstract: Microtubules are dynamic filamentous cytoskeletal proteins composed of tubulin and are an important therapeutic target in tumour cells. Agents that bind to microtubules have been part of the pharmacopoeia of anticancer therapy for decades and until the advent of targeted therapy, microtubules were the only alternative to DNA as a therapeutic target in cancer. The screening of a range of botanical species and marine organisms has yielded promising new antitubulin agents with novel properties. In the current search for novel microtubule-binding agents, enhanced tumour specificity, reduced neurotoxicity and insensitivity to chemoresistance mechanisms are the three main objectives.

1,450 citations