scispace - formally typeset
Search or ask a question
Author

R. Karabowicz

Bio: R. Karabowicz is an academic researcher from Jagiellonian University. The author has contributed to research in topics: Rapidity & Pion. The author has an hindex of 13, co-authored 29 publications receiving 2758 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the main results obtained by the BRAHMS Collaboration on the properties of hot and dense hadronic and partonic matter produced in ultrarelativistic heavy ion collisions at RHIC are reviewed.

1,860 citations

Journal ArticleDOI
T. O. Ablyazimov1, A. Abuhoza, R. P. Adak2, M. Adamczyk3  +599 moreInstitutions (50)
TL;DR: The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates.
Abstract: Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 ( $\sqrt{s_{NN}}=$ 2.7--4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials ( $\mu_B > 500$ MeV), effects of chiral symmetry, and the equation of state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2024, in the context of the worldwide efforts to explore high-density QCD matter.

279 citations

Journal ArticleDOI
TL;DR: In this article, the authors measured rapidity densities dN/dy of pi+/- and K+/- over a broad rapidity range (-0.1 < y < 3.5) for central Au + Au collisions at square root(sNN) = 200 GeV.
Abstract: We have measured rapidity densities dN/dy of pi+/- and K+/- over a broad rapidity range (-0.1 < y < 3.5) for central Au + Au collisions at square root(sNN) = 200 GeV. These data have significant implications for the chemistry and dynamics of the dense system that is initially created in the collisions. The full phase-space yields are 1660 +/- 15 +/- 133 (pi+), 1683 +/- 16 +/- 135 (pi-), 286 +/- 5 +/- 23 (K+), and 242 +/- 4 +/- 19 (K-). The systematics of the strange to nonstrange meson ratios are found to track the variation of the baryochemical potential with rapidity and energy. Landau-Carruthers hydrodynamics is found to describe the bulk transport of the pions in the longitudinal direction.

210 citations

Journal ArticleDOI
TL;DR: The first measurements of xF-dependent single-spin asymmetries of identified charged hadrons, pi+/-, K-, and protons, from transversely polarized proton-proton collisions at RHIC are presented.
Abstract: The first measurements of $x_F$-dependent single spin asymmetries of identified charged hadrons, $\pi^{\pm}$, $K^{\pm}$, and protons, from transversely polarized proton-proton collisions at 62.4 GeV at RHIC are presented. The measurements extend to high-$x_F$ ($|x_F|\sim 0.6$) in both the forward and backward directions.Large asymmetries are seen in the pion and kaon channels. The asymmetries in inclusive $\pi^{+}$ production, $A_N(\pi^+)$, increase with $x_F$ from 0 to $\sim$0.25 %at $x_F = 0.6$ and $A_N(\pi^{-})$ decrease from 0 to $\sim$$-$0.4. Even though $K^-$ contains no valence quarks, observed asymmetries for $K^-$ unexpectedly show positive values similar to those for $K^+$, increasing with $x_F$, whereas proton asymmetries are consistent with zero over the measured kinematic range. Comparisons of the data with predictions of QCD-based models are presented. The flavor dependent single spin asymmetry measurements of identified hadrons allow for stringent tests of theoretical models of partonic dynamics in the RHIC energy regime.

139 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: In this article, the main results obtained by the BRAHMS Collaboration on the properties of hot and dense hadronic and partonic matter produced in ultrarelativistic heavy ion collisions at RHIC are reviewed.

1,860 citations

Journal ArticleDOI
TL;DR: In the most central Au+Au collisions at the highest beam energy, evidence is found for the formation of a very high energy density system whose description in terms of simple hadronic degrees of freedom is inappropriate as discussed by the authors.

1,786 citations

Journal ArticleDOI
TL;DR: A brief history of the original Glauber model is presented in this article, with emphasis on its development into the purely classical, geometric picture used for present-day data analyses.
Abstract: We review the theoretical background, experimental techniques, and phenomenology of what is known in relativistic heavy ion physics as the Glauber model, which is used to calculate geometric quantities. A brief history of the original Glauber model is presented, with emphasis on its development into the purely classical, geometric picture used for present-day data analyses. Distinctions are made between the optical limit and Monte Carlo approaches, which are often used interchangeably but have some essential differences in particular contexts. The methods used by the four RHIC experiments are compared and contrasted, although the end results are reassuringly similar for the various geometric observables. Finally, several important RHIC measurements are highlighted that rely on geometric quantities, estimated from Glauber calculations, to draw insight from experimental observables. The status and future of Glauber modeling in the next generation of heavy ion physics studies is briefly discussed.

1,042 citations

Journal ArticleDOI
TL;DR: In this article, the science case of an Electron-Ion Collider (EIC), focused on the structure and interactions of gluon-dominated matter, with the intent to articulate it to the broader nuclear science community, is presented.
Abstract: This White Paper presents the science case of an Electron-Ion Collider (EIC), focused on the structure and interactions of gluon-dominated matter, with the intent to articulate it to the broader nuclear science community. It was commissioned by the managements of Brookhaven National Laboratory (BNL) and Thomas Jefferson National Accelerator Facility (JLab) with the objective of presenting a summary of scientific opportunities and goals of the EIC as a follow-up to the 2007 NSAC Long Range plan. This document is a culmination of a community-wide effort in nuclear science following a series of workshops on EIC physics over the past decades and, in particular, the focused ten-week program on “Gluons and quark sea at high energies” at the Institute for Nuclear Theory in Fall 2010. It contains a brief description of a few golden physics measurements along with accelerator and detector concepts required to achieve them. It has been benefited profoundly from inputs by the users’ communities of BNL and JLab. This White Paper offers the promise to propel the QCD science program in the US, established with the CEBAF accelerator at JLab and the RHIC collider at BNL, to the next QCD frontier.

1,022 citations