scispace - formally typeset
Search or ask a question
Author

R. Kays

Bio: R. Kays is an academic researcher. The author has contributed to research in topics: Data model. The author has an hindex of 1, co-authored 1 publications receiving 149 citations.
Topics: Data model

Papers
More filters
Journal ArticleDOI
TL;DR: An animal movement data model is presented that is used within the Movebank web application to describe tracked animals and facilitates data comparisons across a broad range of taxa, study designs, and technologies.
Abstract: Studies of animal movement are rapidly increasing as tracking technologies make it possible to collect more data of a larger variety of species. Comparisons of animal movement across sites, times, or species are key to asking questions about animal adaptation, responses to climate and land-use change. Thus, great gains can be made by sharing and exchanging animal tracking data. Here we present an animal movement data model that we use within the Movebank web application to describe tracked animals. The model facilitates data comparisons across a broad range of taxa, study designs, and technologies, and is based on the scientific questions that could be addressed with the data.

184 citations


Cited by
More filters
Journal ArticleDOI
12 Jun 2015-Science
TL;DR: It is suggested that a golden age of animal tracking science has begun and that the upcoming years will be a time of unprecedented exciting discoveries.
Abstract: BACKGROUND The movement of animals makes them fascinating but difficult study subjects. Animal movements underpin many biological phenomena, and understanding them is critical for applications in conservation, health, and food. Traditional approaches to animal tracking used field biologists wielding antennas to record a few dozen locations per animal, revealing only the most general patterns of animal space use. The advent of satellite tracking automated this process, but initially was limited to larger animals and increased the resolution of trajectories to only a few hundred locations per animal. The last few years have shown exponential improvement in tracking technology, leading to smaller tracking devices that can return millions of movement steps for ever-smaller animals. Finally, we have a tool that returns high-resolution data that reveal the detailed facets of animal movement and its many implications for biodiversity, animal ecology, behavior, and ecosystem function. ADVANCES Improved technology has brought animal tracking into the realm of big data, not only through high-resolution movement trajectories, but also through the addition of other on-animal sensors and the integration of remote sensing data about the environment through which these animals are moving. These new data are opening up a breadth of new scientific questions about ecology, evolution, and physiology and enable the use of animals as sensors of the environment. High–temporal resolution movement data also can document brief but important contacts between animals, creating new opportunities to study social networks, as well as interspecific interactions such as competition and predation. With solar panels keeping batteries charged, “lifetime” tracks can now be collected for some species, while broader approaches are aiming for species-wide sampling across multiple populations. Miniaturized tags also help reduce the impact of the devices on the study subjects, improving animal welfare and scientific results. As in other disciplines, the explosion of data volume and variety has created new challenges and opportunities for information management, integration, and analysis. In an exciting interdisciplinary push, biologists, statisticians, and computer scientists have begun to develop new tools that are already leading to new insights and scientific breakthroughs. OUTLOOK We suggest that a golden age of animal tracking science has begun and that the upcoming years will be a time of unprecedented exciting discoveries. Technology continues to improve our ability to track animals, with the promise of smaller tags collecting more data, less invasively, on a greater variety of animals. The big-data tracking studies that are just now being pioneered will become commonplace. If analytical developments can keep pace, the field will be able to develop real-time predictive models that integrate habitat preferences, movement abilities, sensory capacities, and animal memories into movement forecasts. The unique perspective offered by big-data animal tracking enables a new view of animals as naturally evolved sensors of environment, which we think has the potential to help us monitor the planet in completely new ways. A massive multi-individual monitoring program would allow a quorum sensing of our planet, using a variety of species to tap into the diversity of senses that have evolved across animal groups, providing new insight on our world through the sixth sense of the global animal collective. We expect that the field will soon reach a transformational point where these studies do more than inform us about particular species of animals, but allow the animals to teach us about the world.

1,096 citations

Journal ArticleDOI
TL;DR: Douglas Argos-filter can improve data accuracy by 50–90% and is an effective and flexible tool for preparing Argos data for direct biological interpretation or subsequent modelling.
Abstract: Summary The Argos System is used worldwide to satellite-track free-ranging animals, but location errors can range from tens of metres to hundreds of kilometres. Low-quality locations (Argos classes A, 0, B and Z) dominate animal tracking data. Standard-quality animal tracking locations (Argos classes 3, 2 and 1) have larger errors than those reported in Argos manuals. The Douglas Argos-filter (DAF) algorithm flags implausible locations based on user-defined thresholds that allow the algorithm's performance to be tuned to species' movement behaviours and study objectives. The algorithm is available in Movebank – a free online infrastructure for storing, managing, sharing and analysing animal movement data. We compared 21,044 temporally paired global positioning system (GPS) locations with Argos location estimates collected from Argos transmitters on free-ranging waterfowl and condors (13 species, 314 individuals, 54,895 animal-tracking days). The 95th error percentiles for unfiltered Argos locations 0, A, B and Z were within 35·8, 59·6, 163·2 and 220·2 km of the true location, respectively. After applying DAF with liberal thresholds, roughly 20% of the class 0 and A locations and 45% of the class B and Z locations were excluded, and the 95th error percentiles were reduced to 17·2, 15·0, 20·9 and 18·6 km for classes 0, A, B and Z, respectively. As thresholds were applied more conservatively, fewer locations were retained, but they possessed higher overall accuracy. Douglas Argos-filter can improve data accuracy by 50–90% and is an effective and flexible tool for preparing Argos data for direct biological interpretation or subsequent modelling.

252 citations

Journal ArticleDOI
TL;DR: Env-DATA as mentioned in this paper is a publicly available system that automates annotation of movement trajectories with ambient atmospheric observations and underlying landscape information to facilitate new understanding and predictive capabilities of spatiotemporal patterns of animal movement in response to dynamic and changing environments.
Abstract: Background: The movement of animals is strongly influenced by external factors in their surrounding environment such as weather, habitat types, and human land use. With advances in positioning and sensor technologies, it is now possible to capture animal locations at high spatial and temporal granularities. Likewise, scientists have an increasing access to large volumes of environmental data. Environmental data are heterogeneous in source and format, and are usually obtained at different spatiotemporal scales than movement data. Indeed, there remain scientific and technical challenges in developing linkages between the growing collections of animal movement data and the large repositories of heterogeneous remote sensing observations, as well as in the developments of new statistical and computational methods for the analysis of movement in its environmental context. These challenges include retrieval, indexing, efficient storage, data integration, and analytical techniques. Results: This paper contributes to movement ecology research by presenting a new publicly available system, Environmental-Data Automated Track Annotation (Env-DATA), that automates annotation of movement trajectories with ambient atmospheric observations and underlying landscape information. Env-DATA provides a free and easy-to-use platform that eliminates technical difficulties of the annotation processes and relieves end users of a ton of tedious and time-consuming tasks associated with annotation, including data acquisition, data transformation and integration, resampling, and interpolation. The system is illustrated with a case study of Galapagos Albatross (Phoebastria irrorata) tracks and their relationship to wind, ocean productivity and chlorophyll concentration. Our case study illustrates why adult albatrosses make long-range trips to preferred, productive areas and how wind assistance facilitates their return flights while their outbound flights are hampered by head winds. Conclusions: The new Env-DATA system enhances Movebank, an open portal of animal tracking data, by automating access to environmental variables from global remote sensing, weather, and ecosystem products from open web resources. The system provides several interpolation methods from the native grid resolution and structure to a global regular grid linked with the movement tracks in space and time. The aim is to facilitate new understanding and predictive capabilities of spatiotemporal patterns of animal movement in response to dynamic and changing environments from local to global scales.

245 citations

01 Dec 2013
TL;DR: The new Env-DATA system enhances Movebank, an open portal of animal tracking data, by automating access to environmental variables from global remote sensing, weather, and ecosystem products from open web resources.
Abstract: BackgroundThe movement of animals is strongly influenced by external factors in their surrounding environment such as weather, habitat types, and human land use. With advances in positioning and sensor technologies, it is now possible to capture animal locations at high spatial and temporal granularities. Likewise, scientists have an increasing access to large volumes of environmental data. Environmental data are heterogeneous in source and format, and are usually obtained at different spatiotemporal scales than movement data. Indeed, there remain scientific and technical challenges in developing linkages between the growing collections of animal movement data and the large repositories of heterogeneous remote sensing observations, as well as in the developments of new statistical and computational methods for the analysis of movement in its environmental context. These challenges include retrieval, indexing, efficient storage, data integration, and analytical techniques.ResultsThis paper contributes to movement ecology research by presenting a new publicly available system, Environmental-Data Automated Track Annotation (Env-DATA), that automates annotation of movement trajectories with ambient atmospheric observations and underlying landscape information. Env-DATA provides a free and easy-to-use platform that eliminates technical difficulties of the annotation processes and relieves end users of a ton of tedious and time-consuming tasks associated with annotation, including data acquisition, data transformation and integration, resampling, and interpolation. The system is illustrated with a case study of Galapagos Albatross (Phoebastria irrorata) tracks and their relationship to wind, ocean productivity and chlorophyll concentration. Our case study illustrates why adult albatrosses make long-range trips to preferred, productive areas and how wind assistance facilitates their return flights while their outbound flights are hampered by head winds.ConclusionsThe new Env-DATA system enhances Movebank, an open portal of animal tracking data, by automating access to environmental variables from global remote sensing, weather, and ecosystem products from open web resources. The system provides several interpolation methods from the native grid resolution and structure to a global regular grid linked with the movement tracks in space and time. The aim is to facilitate new understanding and predictive capabilities of spatiotemporal patterns of animal movement in response to dynamic and changing environments from local to global scales.

231 citations

Journal ArticleDOI
TL;DR: This software incorporates state-of-the art VMS and logbook analysing methods standardizing the process towards obtaining pan-European, or even worldwide indicators of fishing distribution and impact as required for spatial planning.

188 citations