scispace - formally typeset
Search or ask a question
Author

R. L. Fox

Bio: R. L. Fox is an academic researcher from Case Western Reserve University. The author has contributed to research in topics: Nonlinear programming & Finite element method. The author has an hindex of 10, co-authored 13 publications receiving 1818 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Exact expressions for rates of change of eigenvalues and eigenvector to facilitate computerized design of complex structures are presented.
Abstract: Exact expressions for rates of change of eigenvalues and eigenvector to facilitate computerized design of complex structures

1,094 citations

Journal ArticleDOI
01 Jan 1974
TL;DR: The basic principles of GRG are discussed, the logic of a computer program implementing this algorithm is presented, and a specific GRG algorithm is constructed by means of flow charts and discussion.
Abstract: : Generalized Reduced Gradient (GRG) methods are algorithms for solving nonlinear programs of general structure. This paper discusses the basic principles of GRG, and constructs a specific GRG algorithm. The logic of a computer program implementing this algorithm is presented by means of flow charts and discussion. A numerical example is given to illustrate the functioning of this program.

304 citations

Journal ArticleDOI
TL;DR: In this article, the stiffness and consistent mass matrices for a finite cylindrical shell element are derived based on linear behavior and thin-shell assumptions, and the assumed displacement pattern satisfies the admissibility requirements in the statement of the principle of minimum potential energy.
Abstract: The development of the stiffness and consistent mass matrices for a finite cylindrical shell element is reported. The derivation of these matrices is based upon linear behavior and thin-shell assumptions. Expressing the assumed displacement state over the middle surface of the cylindrical shell element as products of one-dimensional, first-order Hermite interpolation formulas, it is possible to insure that the displacement state for the assembled set of cylindrical elements is geometrically admissible. Mono tonic convergence of the total potential energy is therefore assured as the modeling is successively refined, since the assumed displacement pattern satisfies the admissibility requirements in the statement of the principle of minimum potential energy. A numerical example is included to demonstrate the effectiveness of this cylindrical shell discrete element.

131 citations

Journal ArticleDOI
TL;DR: In this paper an unconstrained minimization approach is applied to a problem in finite-element structural analysis and is shown numerically to be competitive with conventional methods.
Abstract: The equivalence of problems in structural analysis to certain variational statements has traditionally been used as a means of formulating field equations and natural boundary conditions. In recent years developments in computers and minimization algorithms have made it possible to determine the displacement state that satisfies the variational principle without direct recourse to the solution of a system of equations. In this paper an unconstrained minimization approach is applied to a problem in finite-element structural analysis and is shown numerically to be competitive with conventional methods. Adopting an energyminimization viewpoint, important storage advantages of the conjugate-gradient method are extended by eliminating the need for an assembled stiffness matrix. The convergence of conjugate direction methods in quadratic problems is shown to be greatly influenced by scale effects. This problem is studied using the eigenvalues of the stiffness matrix and a practical solution is proposed which by a special scaling transformation can improve the ratio of the maximum to the minimum eigenvalue by several orders of magnitude. This transformation is applied with considerable success to a plate-bending problem.

82 citations

Journal ArticleDOI
TL;DR: Structural optimization of designs with requirements including restrictions on structure dynamic response and characteristics is studied in this article, where the authors propose a structural optimization approach with restrictions on the dynamic response of a structure.
Abstract: Structural optimization of designs with requirements including restrictions on structure dynamic response and characteristics

72 citations


Cited by
More filters
Book
01 Jan 2011
TL;DR: This chapter discusses Optimization Techniques, which are used in Linear Programming I and II, and Nonlinear Programming II, which is concerned with One-Dimensional Minimization.
Abstract: Preface. 1 Introduction to Optimization. 1.1 Introduction. 1.2 Historical Development. 1.3 Engineering Applications of Optimization. 1.4 Statement of an Optimization Problem. 1.5 Classification of Optimization Problems. 1.6 Optimization Techniques. 1.7 Engineering Optimization Literature. 1.8 Solution of Optimization Problems Using MATLAB. References and Bibliography. Review Questions. Problems. 2 Classical Optimization Techniques. 2.1 Introduction. 2.2 Single-Variable Optimization. 2.3 Multivariable Optimization with No Constraints. 2.4 Multivariable Optimization with Equality Constraints. 2.5 Multivariable Optimization with Inequality Constraints. 2.6 Convex Programming Problem. References and Bibliography. Review Questions. Problems. 3 Linear Programming I: Simplex Method. 3.1 Introduction. 3.2 Applications of Linear Programming. 3.3 Standard Form of a Linear Programming Problem. 3.4 Geometry of Linear Programming Problems. 3.5 Definitions and Theorems. 3.6 Solution of a System of Linear Simultaneous Equations. 3.7 Pivotal Reduction of a General System of Equations. 3.8 Motivation of the Simplex Method. 3.9 Simplex Algorithm. 3.10 Two Phases of the Simplex Method. 3.11 MATLAB Solution of LP Problems. References and Bibliography. Review Questions. Problems. 4 Linear Programming II: Additional Topics and Extensions. 4.1 Introduction. 4.2 Revised Simplex Method. 4.3 Duality in Linear Programming. 4.4 Decomposition Principle. 4.5 Sensitivity or Postoptimality Analysis. 4.6 Transportation Problem. 4.7 Karmarkar's Interior Method. 4.8 Quadratic Programming. 4.9 MATLAB Solutions. References and Bibliography. Review Questions. Problems. 5 Nonlinear Programming I: One-Dimensional Minimization Methods. 5.1 Introduction. 5.2 Unimodal Function. ELIMINATION METHODS. 5.3 Unrestricted Search. 5.4 Exhaustive Search. 5.5 Dichotomous Search. 5.6 Interval Halving Method. 5.7 Fibonacci Method. 5.8 Golden Section Method. 5.9 Comparison of Elimination Methods. INTERPOLATION METHODS. 5.10 Quadratic Interpolation Method. 5.11 Cubic Interpolation Method. 5.12 Direct Root Methods. 5.13 Practical Considerations. 5.14 MATLAB Solution of One-Dimensional Minimization Problems. References and Bibliography. Review Questions. Problems. 6 Nonlinear Programming II: Unconstrained Optimization Techniques. 6.1 Introduction. DIRECT SEARCH METHODS. 6.2 Random Search Methods. 6.3 Grid Search Method. 6.4 Univariate Method. 6.5 Pattern Directions. 6.6 Powell's Method. 6.7 Simplex Method. INDIRECT SEARCH (DESCENT) METHODS. 6.8 Gradient of a Function. 6.9 Steepest Descent (Cauchy) Method. 6.10 Conjugate Gradient (Fletcher-Reeves) Method. 6.11 Newton's Method. 6.12 Marquardt Method. 6.13 Quasi-Newton Methods. 6.14 Davidon-Fletcher-Powell Method. 6.15 Broyden-Fletcher-Goldfarb-Shanno Method. 6.16 Test Functions. 6.17 MATLAB Solution of Unconstrained Optimization Problems. References and Bibliography. Review Questions. Problems. 7 Nonlinear Programming III: Constrained Optimization Techniques. 7.1 Introduction. 7.2 Characteristics of a Constrained Problem. DIRECT METHODS. 7.3 Random Search Methods. 7.4 Complex Method. 7.5 Sequential Linear Programming. 7.6 Basic Approach in the Methods of Feasible Directions. 7.7 Zoutendijk's Method of Feasible Directions. 7.8 Rosen's Gradient Projection Method. 7.9 Generalized Reduced Gradient Method. 7.10 Sequential Quadratic Programming. INDIRECT METHODS. 7.11 Transformation Techniques. 7.12 Basic Approach of the Penalty Function Method. 7.13 Interior Penalty Function Method. 7.14 Convex Programming Problem. 7.15 Exterior Penalty Function Method. 7.16 Extrapolation Techniques in the Interior Penalty Function Method. 7.17 Extended Interior Penalty Function Methods. 7.18 Penalty Function Method for Problems with Mixed Equality and Inequality Constraints. 7.19 Penalty Function Method for Parametric Constraints. 7.20 Augmented Lagrange Multiplier Method. 7.21 Checking the Convergence of Constrained Optimization Problems. 7.22 Test Problems. 7.23 MATLAB Solution of Constrained Optimization Problems. References and Bibliography. Review Questions. Problems. 8 Geometric Programming. 8.1 Introduction. 8.2 Posynomial. 8.3 Unconstrained Minimization Problem. 8.4 Solution of an Unconstrained Geometric Programming Program Using Differential Calculus. 8.5 Solution of an Unconstrained Geometric Programming Problem Using Arithmetic-Geometric Inequality. 8.6 Primal-Dual Relationship and Sufficiency Conditions in the Unconstrained Case. 8.7 Constrained Minimization. 8.8 Solution of a Constrained Geometric Programming Problem. 8.9 Primal and Dual Programs in the Case of Less-Than Inequalities. 8.10 Geometric Programming with Mixed Inequality Constraints. 8.11 Complementary Geometric Programming. 8.12 Applications of Geometric Programming. References and Bibliography. Review Questions. Problems. 9 Dynamic Programming. 9.1 Introduction. 9.2 Multistage Decision Processes. 9.3 Concept of Suboptimization and Principle of Optimality. 9.4 Computational Procedure in Dynamic Programming. 9.5 Example Illustrating the Calculus Method of Solution. 9.6 Example Illustrating the Tabular Method of Solution. 9.7 Conversion of a Final Value Problem into an Initial Value Problem. 9.8 Linear Programming as a Case of Dynamic Programming. 9.9 Continuous Dynamic Programming. 9.10 Additional Applications. References and Bibliography. Review Questions. Problems. 10 Integer Programming. 10.1 Introduction 588. INTEGER LINEAR PROGRAMMING. 10.2 Graphical Representation. 10.3 Gomory's Cutting Plane Method. 10.4 Balas' Algorithm for Zero-One Programming Problems. INTEGER NONLINEAR PROGRAMMING. 10.5 Integer Polynomial Programming. 10.6 Branch-and-Bound Method. 10.7 Sequential Linear Discrete Programming. 10.8 Generalized Penalty Function Method. 10.9 Solution of Binary Programming Problems Using MATLAB. References and Bibliography. Review Questions. Problems. 11 Stochastic Programming. 11.1 Introduction. 11.2 Basic Concepts of Probability Theory. 11.3 Stochastic Linear Programming. 11.4 Stochastic Nonlinear Programming. 11.5 Stochastic Geometric Programming. References and Bibliography. Review Questions. Problems. 12 Optimal Control and Optimality Criteria Methods. 12.1 Introduction. 12.2 Calculus of Variations. 12.3 Optimal Control Theory. 12.4 Optimality Criteria Methods. References and Bibliography. Review Questions. Problems. 13 Modern Methods of Optimization. 13.1 Introduction. 13.2 Genetic Algorithms. 13.3 Simulated Annealing. 13.4 Particle Swarm Optimization. 13.5 Ant Colony Optimization. 13.6 Optimization of Fuzzy Systems. 13.7 Neural-Network-Based Optimization. References and Bibliography. Review Questions. Problems. 14 Practical Aspects of Optimization. 14.1 Introduction. 14.2 Reduction of Size of an Optimization Problem. 14.3 Fast Reanalysis Techniques. 14.4 Derivatives of Static Displacements and Stresses. 14.5 Derivatives of Eigenvalues and Eigenvectors. 14.6 Derivatives of Transient Response. 14.7 Sensitivity of Optimum Solution to Problem Parameters. 14.8 Multilevel Optimization. 14.9 Parallel Processing. 14.10 Multiobjective Optimization. 14.11 Solution of Multiobjective Problems Using MATLAB. References and Bibliography. Review Questions. Problems. A Convex and Concave Functions. B Some Computational Aspects of Optimization. B.1 Choice of Method. B.2 Comparison of Unconstrained Methods. B.3 Comparison of Constrained Methods. B.4 Availability of Computer Programs. B.5 Scaling of Design Variables and Constraints. B.6 Computer Programs for Modern Methods of Optimization. References and Bibliography. C Introduction to MATLAB(R) . C.1 Features and Special Characters. C.2 Defining Matrices in MATLAB. C.3 CREATING m-FILES. C.4 Optimization Toolbox. Answers to Selected Problems. Index .

3,283 citations

Journal ArticleDOI
TL;DR: A Generalized Reduced Gradient algorithm for nonlinear programming, its implementation as a FORTRAN program for solving small to medium size problems, and some computational results are described.
Abstract: : The purpose of this paper is to describe a Generalized Reduced Gradient (GRG) algorithm for nonlinear programming, its implementation as a FORTRAN program for solving small to medium size problems, and some computational results. Our focus is more on the software implementation of the algorithm than on its mathematical properties. This is in line with the premise that robust, efficient, easy to use NLP software must be written and made accessible if nonlinear programming is to progress, both in theory and in practice.

1,165 citations

Journal ArticleDOI
TL;DR: A simplified procedure is presented for the determination of the derivatives of eigenvectors of nth order algebraic eigensystems, applicable to symmetric or nonsymmetric systems, and requires knowledge of only one eigenvalue and its associated right and left eigenavectors.
Abstract: A simplified procedure is presented for the determination of the derivatives of eigenvectors of nth order algebraic eigensystems. The method is applicable to symmetric or nonsymmetric systems, and requires knowledge of only one eigenvalue and its associated right and left eigenvectors. In the procedure, the matrix of the original eigensystem of rank (/?-!) is modified to convert it to a matrix of rank /?, which then is solved directly for a vector which, together with the eigenvector, gives the eigenvector derivative to within an arbitrary constant. The norm of the eigenvector is used to determine this constant and complete the calculation. The method is simple, since the modified n rank matrix is formed without matrix multiplication or extensive manipulation. Since the matrix has the same bandedness as the original eigensystems, it can be treated efficiently using the same banded equation solution algorithms that are used to find the eigenvectors.

878 citations

Journal ArticleDOI
TL;DR: In this paper, shape and topology optimization of a linearly elastic structure using a modification of the homogenization method introduced by Bendsoe and Kikuchi together with various examples which may justify validity and strength of the present approach for plane structures are discussed.

808 citations