scispace - formally typeset
Search or ask a question
Author

R. L. Noble

Bio: R. L. Noble is an academic researcher. The author has contributed to research in topics: Peptide synthesis. The author has an hindex of 1, co-authored 1 publications receiving 173 citations.

Papers
More filters

Cited by
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that it is possible to enhance the biological activity of fibrin by enzymatically incorporating exogenous oligopeptide domains of morphoregulatory proteins.
Abstract: Fibrin plays an important role in wound healing and regeneration, and enjoys widespread use in surgery and tissue engineering. The enzymatic activity of Factor XIIIa was employed to covalently incorporate exogenous bioactive peptides within fibrin during coagulation. Fibrin gels were formed with incorporated peptides from laminin and N-cadherin alone and in combination at concentrations up to 8.2 mol peptide per mole of fibrinogen. Neurite extension in vitro was enhanced when gels were augmented with exogenous peptide, with the maximal improvement reaching 75%. When this particular fibrin derivative was evaluated in rats in the repair of the severed dorsal root within polymeric tubes, the number of regenerated axons was enhanced by 85% relative to animals treated with tubes filled with unmodified fibrin. These results demonstrate that it is possible to enhance the biological activity of fibrin by enzymatically incorporating exogenous oligopeptide domains of morphoregulatory proteins.

340 citations

Journal ArticleDOI
TL;DR: It was demonstrated that the injection of an aqueous solution of PA together with BMP-2 into the back subcutis of rats, resulted in the formation of a transparent 3-D hydrogel at the injected site and induced significant homogeneous ectopic bone formation around the injected sites, in marked contrast to B MP-2 injection alone or PA injection alone.

171 citations

Journal ArticleDOI
TL;DR: This work has identified an AIF-interacting protein, CHCHD4, which is the central component of a redox-sensitive mitochondrial intermembrane space import machinery that contributes to the biogenesis of respiratory chain complexes and establishes an unexpected link between the vital function of AIF and the propensity of cells to undergo apoptosis.

149 citations

Journal ArticleDOI
TL;DR: Results suggest that cells recognize the RGD gradient and adhere onto it assuming a stretched shape, and cells tend to migrate in the direction of the gradient, as their speed is higher than that of cells migrating on hydrogels with a uniform distribution of RGD and increases by increasingRGD gradient steepness.

144 citations

Journal ArticleDOI
TL;DR: Feed studies in one commonly used animal model of obesity and diabetes, (ob/ob) mice, suggest that GIP is the major physiological component of the enteroinsular axis, contributing approximately 80% to incretin-induced insulin release.
Abstract: Aims/hypothesis. This study examined the biological effects of the GIP receptor antagonist, (Pro(3))GIP and the GLP-1 receptor antagonist, exendin(9-39)amide. Methods Cyclic AMP production was assessed in Chinese hamster lung fibroblasts transfected with human GIP or GLP-1 receptors, respectively. In vitro insulin release studies were assessed in BRIN-BD11 cells while in vivo insulinotropic and glycaemic responses were measured in obese diabetic (ob/ob) mice. Results. In GIP receptor-transfected fibroblasts, (Pro(3))-GIP or exendin(9-39)amide inhibited GIP-stimulated cyclic AMP production with maximal inhibition of 70.0+/-3.5% and 73.5+/-3.2% at 10(-6) mol/l, respectively. In GLP-1 receptor-transfected fibroblasts, exendin-(9-39)amide inhibited GLP-1-stimulated cyclic AMP production with maximal inhibition of 60+/-0.7% at 10(-6) Mol/l, whereas (Pro(3))GIP had no effect. (Pro(3))GIP specifically inhibited GIP-stimulated insulin release (86%;p<0.001) from clonal BRIN-BD11 cells, but had no effect on GLP-1-stimulated insulin release. In contrast, exendin(9-39)amide inhibited both GIP and GLP-1-stimulated insulin release (57% and 44%, respectively; p<0.001). Administration of (Pro(3))GIP, exendin(9-39)amide or a combination of both peptides (25 nmol/kg body weight, i.p.) to fasted (ob/ob) mice decreased the plasma insulin responses by 42%, 54% and 49%, respectively (p<;0.01 to p<0.001). The hyperinsulinaemia of non-fasted (ob/ob) mice was decreased by 19%, 27% and 18% (p<0.05 to p<0.01) by injection of (Pro(3))GIP, exendin(9-39)amide or combined peptides but accompanying changes of plasma glucose were small. Conclusions/interpretation. These data show that (Pro(3))GIP is a specific GIP receptor antagonist. Furthermore, feeding studies in one commonly used animal model of obesity and diabetes, (ob/ob) mice, suggest that GIP is the major physiological component of the enteroinsular axis, contributing approximately 80% to incretin-induced insulin release.

131 citations