scispace - formally typeset
Search or ask a question
Author

R. Lagraauw

Other affiliations: University of Twente
Bio: R. Lagraauw is an academic researcher from MESA+ Institute for Nanotechnology. The author has contributed to research in topics: Drop (liquid) & Wetting. The author has an hindex of 4, co-authored 4 publications receiving 281 citations. Previous affiliations of R. Lagraauw include University of Twente.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a different universal bouncing mechanism that occurs on both wetting and non-wetting flat surfaces for both high and low surface tension liquids was reported. But the authors focused on superhydrophobic surfaces with specific surface structures enabling drop bouncing with reduced contact time.
Abstract: The impingement of drops onto solid surfaces1, 2 plays a crucial role in a variety of processes, including inkjet printing, fog harvesting, anti-icing, dropwise condensation and spray coating3, 4, 5, 6. Recent efforts in understanding and controlling drop impact behaviour focused on superhydrophobic surfaces with specific surface structures enabling drop bouncing with reduced contact time7, 8. Here, we report a different universal bouncing mechanism that occurs on both wetting and non-wetting flat surfaces for both high and low surface tension liquids. Using high-speed multiple-wavelength interferometry9, we show that this bouncing mechanism is based on the continuous presence of an air film for moderate drop impact velocities. This submicrometre ‘air cushion’ slows down the incoming drop and reverses its momentum. Viscous forces in the air film play a key role in this process: they provide transient stability of the air cushion against squeeze-out, mediate momentum transfer, and contribute a substantial part of the energy dissipation during bouncing.

197 citations

Journal ArticleDOI
TL;DR: The general physical conditions required for capturing sliding drops on an inclined plane that is equipped with electrically tunable wetting defects are determined and it is shown that electrically Tunable defects can be used to guide sliding drops along actively switchable tracks—with potential applications in microfluidics.
Abstract: Controlling the motion of drops on solid surfaces is crucial in many natural phenomena and technological processes including the collection and removal of rain drops, cleaning technology and heat exchangers Topographic and chemical heterogeneities on solid surfaces give rise to pinning forces that can capture and steer drops in desired directions Here we determine general physical conditions required for capturing sliding drops on an inclined plane that is equipped with electrically tunable wetting defects By mapping the drop dynamics on the one-dimensional motion of a point mass, we demonstrate that the trapping process is controlled by two dimensionless parameters, the trapping strength measured in units of the driving force and the ratio between a viscous and an inertial time scale Complementary experiments involving superhydrophobic surfaces with wetting defects demonstrate the general applicability of the concept Moreover, we show that electrically tunable defects can be used to guide sliding drops along actively switchable tracks—with potential applications in microfluidics

96 citations

Journal ArticleDOI
TL;DR: In this paper, the authors study the energy conversion during a bounce series by analyzing the droplet motion and its shape (decomposed into eigenmodes), showing that viscous dissipation associated with the in-flight oscillations accounts for less than 20 % of the total energy loss.
Abstract: Millimetre-sized droplets are able to bounce multiple times on flat solid substrates irrespective of their wettability, provided that a micrometre-thick air layer is sustained below the droplet, limiting $\mathit{We}$We to ${\lesssim}4$≲4. We study the energy conversion during a bounce series by analysing the droplet motion and its shape (decomposed into eigenmodes). Internal modes are excited during the bounce, yet the viscous dissipation associated with the in-flight oscillations accounts for less than 20 % of the total energy loss. This suggests a significant contribution from the bouncing process itself, despite the continuous presence of a lubricating air film below the droplet. To study the role of this air film we visualize it using reflection interference microscopy. We quantify its thickness (typically a few micrometres) with sub-millisecond time resolution and ${\sim}30~\text{nm}$∼30 nm height resolution. Our measurements reveal strong asymmetry in the air film shape between the spreading and receding phases of the bouncing process. This asymmetry is crucial for effective momentum reversal of the droplet: lubrication theory shows that the dissipative force is repulsive throughout each bounce, even near lift-off, which leads to a high restitution coefficient. After multiple bounces the droplet eventually hovers on the air film, while continuously experiencing a lift force to sustain its weight. Only after a long time does the droplet finally wet the substrate. The observed bounce mechanism can be described with a single oscillation mode model that successfully captures the asymmetry of the air film evolution.

29 citations

Journal ArticleDOI
TL;DR: In this article, the authors show that the jump height depends not only on the applied voltage but also in a periodic manner on the duration of the actuation pulse, i.e., the amount of energy that is transferred from surface energy to the translational degree of freedom.
Abstract: Aqueous sessile drops are launched from a super-hydrophobic surface by electric actuation in an electrowetting configuration with a voltage pulse of variable duration. We show that the jump height, i.e. the amount of energy that is transferred from surface energy to the translational degree of freedom, depends not only on the applied voltage but also in a periodic manner on the duration of the actuation pulse. Specifically, we find that the jump height for a pulse of optimized duration is almost twice as high as the one obtained upon turning off the voltage after equilibration of the drop under electrowetting. Representing the drop by a simple oscillator, we establish a relation between the eigenfrequency of the drop and the optimum actuation time required for most efficient energy conversion. From a general perspective, our experiments illustrate a generic concept how timed actuation in combination with inertia can enhance the flexibility and efficiency of drop manipulation operations.

14 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors focus on recent experimental and theoretical studies, which aim at unraveling the underlying physics, characterized by the delicate interplay of liquid inertia, viscosity, and surface tension, but also the surrounding gas.
Abstract: A drop hitting a solid surface can deposit, bounce, or splash. Splashing arises from the breakup of a fine liquid sheet that is ejected radially along the substrate. Bouncing and deposition depend crucially on the wetting properties of the substrate. In this review, we focus on recent experimental and theoretical studies, which aim at unraveling the underlying physics, characterized by the delicate interplay of not only liquid inertia, viscosity, and surface tension, but also the surrounding gas. The gas cushions the initial contact; it is entrapped in a central microbubble on the substrate; and it promotes the so-called corona splash, by lifting the lamella away from the solid. Particular attention is paid to the influence of surface roughness, natural or engineered to enhance repellency, relevant in many applications.

994 citations

Journal ArticleDOI
TL;DR: It is shown that a drop impinging on Echevaria leaves exhibits asymmetric bouncing dynamics with distinct spreading and retraction along two perpendicular directions, which results from an asymmetric momentum and mass distribution that allows for preferential fluid pumping around the drop rim.
Abstract: The impact of liquid drops on solid surfaces is ubiquitous in nature, and of practical importance in many industrial processes. A drop hitting a flat surface retains a circular symmetry throughout the impact process. Here we show that a drop impinging on Echevaria leaves exhibits asymmetric bouncing dynamics with distinct spreading and retraction along two perpendicular directions. This is a direct consequence of the cylindrical leaves that have a convex/concave architecture of size comparable to the drop. Systematic experimental investigations on mimetic surfaces and lattice Boltzmann simulations reveal that this novel phenomenon results from an asymmetric momentum and mass distribution that allows for preferential fluid pumping around the drop rim. The asymmetry of the bouncing leads to ∼40% reduction in contact time.

332 citations

Journal ArticleDOI
05 Nov 2015-Nature
TL;DR: It is shown how surface texturing can produce droplet–surface interactions that prohibit liquid and freezing water-droplet retention on surfaces and can spontaneously remove surface icing by lifting away icy drops the moment they freeze.
Abstract: Spontaneous removal of condensed matter from surfaces is exploited in nature and in a broad range of technologies to achieve self-cleaning, anti-icing and condensation control. But despite much progress, our understanding of the phenomena leading to such behaviour remains incomplete, which makes it challenging to rationally design surfaces that benefit from its manifestation. Here we show that water droplets resting on superhydrophobic textured surfaces in a low-pressure environment can self-remove through sudden spontaneous levitation and subsequent trampoline-like bouncing behaviour, in which sequential collisions with the surface accelerate the droplets. These collisions have restitution coefficients (ratios of relative speeds after and before collision) greater than unity despite complete rigidity of the surface, and thus seemingly violate the second law of thermodynamics. However, these restitution coefficients result from an overpressure beneath the droplet produced by fast droplet vaporization while substrate adhesion and surface texture restrict vapour flow. We also show that the high vaporization rates experienced by the droplets and the associated cooling can result in freezing from a supercooled state that triggers a sudden increase in vaporization, which in turn boosts the levitation process. This effect can spontaneously remove surface icing by lifting away icy drops the moment they freeze. Although these observations are relevant only to systems in a low-pressure environment, they show how surface texturing can produce droplet-surface interactions that prohibit liquid and freezing water-droplet retention on surfaces.

326 citations

Journal ArticleDOI
TL;DR: A bottom-up approach to prepare super-repellent coatings using a mixture of fluorosilanes and cyanoacrylate is reported, which are transparent, durable and demonstrate universal liquid bouncing, tailored responsiveness and anti-freezing properties.
Abstract: High-performance coatings that durably and fully repel liquids are of interest for fundamental research and practical applications. Such coatings should allow for droplet beading, roll off and bouncing, which is difficult to achieve for ultralow surface tension liquids. Here we report a bottom-up approach to prepare super-repellent coatings using a mixture of fluorosilanes and cyanoacrylate. On application to surfaces, the coatings assemble into thin films of locally multi-re-entrant hierarchical structures with very low surface energies. The resulting materials are super-repellent to solvents, acids and bases, polymer solutions and ultralow surface tension liquids, characterized by ultrahigh liquid contact angles (>150°) and negligible roll-off angles (~0°). Furthermore, the coatings are transparent, durable and demonstrate universal liquid bouncing, tailored responsiveness and anti-freezing properties, and are thus a promising alternative to existing synthetic super-repellent coatings.

251 citations

Journal ArticleDOI
TL;DR: In this article, the authors show that the wetting symmetry of a droplet can be broken at high temperature by creating two concurrent thermal states (Leidenfrost and contact-boiling) on a topographically patterned surface, thus engendering a preferential motion of the droplet towards the region with a higher heat transfer coefficient.
Abstract: Directed motion of liquid droplets is of considerable importance in various water and thermal management technologies. Although various methods to generate such motion have been developed at low temperature, they become rather ineffective at high temperature, where the droplet transits to a Leidenfrost state. In this state, it becomes challenging to control and direct the motion of the highly mobile droplets towards specific locations on the surface without compromising the effective heat transfer. Here we report that the wetting symmetry of a droplet can be broken at high temperature by creating two concurrent thermal states (Leidenfrost and contact-boiling) on a topographically patterned surface, thus engendering a preferential motion of a droplet towards the region with a higher heat transfer coefficient. The fundamental understanding and the ability to control the droplet dynamics at high temperature have promising applications in various systems requiring high thermal efficiency, operational security and fidelity. Controlled motion of a droplet on a hot surface is hampered by the formation of an evaporation layer below the droplet (Leidenfrost effect). But a cleverly patterned surface induces a Leidenfrost–contact-boiling state, directing the droplet’s motion.

249 citations