scispace - formally typeset
Search or ask a question
Author

R. M. Bozorth

Bio: R. M. Bozorth is an academic researcher. The author has contributed to research in topics: Magnetostriction & Anisotropy. The author has an hindex of 1, co-authored 1 publications receiving 425 citations.

Papers
More filters

Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the use of reactive molecular-beam epitaxy and pulsed-laser deposition to synthesize functional oxides, including ferroelectrics, ferromagnets, and materials that are both at the same time, is described.
Abstract: The broad spectrum of electronic and optical properties exhibited by oxides offers tremendous opportunities for microelectronic devices, especially when a combination of properties in a single device is desired Here we describe the use of reactive molecular-beam epitaxy and pulsed-laser deposition to synthesize functional oxides, including ferroelectrics, ferromagnets, and materials that are both at the same time Owing to the dependence of properties on direction, it is often optimal to grow functional oxides in particular directions to maximize their properties for a specific application But these thin film techniques offer more than orientation control; customization of the film structure down to the atomic-layer level is possible Numerous examples of the controlled epitaxial growth of oxides with perovskite and perovskite-related structures, including superlattices and metastable phases, are shown In addition to integrating functional oxides with conventional semiconductors, standard semiconductor practices involving epitaxial strain, confined thickness, and modulation doping can also be applied to oxide thin films Results of fundamental scientific importance as well as results revealing the tremendous potential of utilizing functional oxide thin films to create devices with enhanced performance are described

454 citations

Book ChapterDOI
TL;DR: In this article, a general treatment of magnetostriction for the cases of hexagonal and cubic symmetry is described, which is applicable to the rare earth elements and rare earth-iron compounds and the role of intrinsic as well as extrinsic effects.
Abstract: Publisher Summary This chapter provides an overview of the magnetoelastic properties of the highly magnetostrictive rare earth-Fe2 alloys. The chapter describes a general treatment of magnetostriction for the cases of hexagonal and cubic symmetry, which is applicable to the rare earth elements and the rare earth-iron compounds. The chapter presents the magnetostriction of binary rare earth-iron alloys and the magnetostriction of single crystal and polycrystal RFe2 compounds are compared to other magnetostrictive materials at room temperature. The chapter discusses a possible source of startling magnetostriction anisotropy, measurements of magnetization, sublattice magnetization, and magnetic anisotropy, and the role of intrinsic as well as extrinsic effects. It reports the effects of the strong magnetoelastic coupling on sound velocities and elastic moduli and observes extraordinarily large ∆E effects and changes in sound velocity in single crystals, polycrystals, and amorphous rare earth-Fe2 alloys. The chapter concludes with a discussion of the recent measurements of linear and volume magnetostriction on the amorphous form of the RFe2 alloys.

319 citations

Journal ArticleDOI
TL;DR: In this paper, nearly monodispersed CoFe2O4 nanoparticles with average sizes between 8 and 100 nm were synthesized by using seed-mediated growth dominant coprecipitation and modified oxidation methods.
Abstract: Nearly monodispersed CoFe2O4 nanoparticles with average sizes between 8 and 100 nm were synthesized by using seed-mediated growth dominant coprecipitation and modified oxidation methods. X-ray diffraction and Mossbauer spectroscopy analyses confirmed the spinel phase and a stoichiometric composition of (Co0.25Fe0.75)[Co0.75Fe1.25]O4 for powders with different particle diameters. Rotational hysteresis loss (Wr) analysis showed an average switching field (Hp) of 17 kOe and a magnetic anisotropy field (Hk) of 38 kOe for the 40 nm CoFe2O4 particles. The corresponding magnetocrystalline anisotropy energy constant (K) was about 5.1×106 erg/cc. The Hc and Hp results suggest that the critical single-domain size of CoFe2O4 is about 40 nm. The room temperature coercivity (Hc) of the 40 nm CoFe2O4 particles is found to be as high as 4.65 kOe.

247 citations

Book ChapterDOI
01 Jan 1988
TL;DR: Legvold et al. as discussed by the authors measured the basal plane magnetostrictions of Tb and Dy at low temperatures, which are 100 to 10000 times typical magnetostrains and still remain the largest known (~1%).
Abstract: By the early 1960’s, it was widely recognized that the rare earths possessed many extraordinary magnetic properties. Neutron diffraction measurements, for example, showed that the spin structures were much more complex than those of any of the classical ferromagnets or antiferromagnets. More importantly, in the heavy rare earth metals, the parallel coupling of large orbital and large spin angular momenta yielded huge magnetic moments of 9μ B and 10μ B, dwarfing the conventional values of 0.6 for Ni and 2.2 for Fe. Enormous magnetic anisotropies were also encountered in the heavy rare earth elements. In 1963, a breakthrough in magnetostrictive materials occurred with the measurement of the basal plane magnetostrictions of Tb and Dy at low temperatures (Legvold et al. 1963, Clark et al. 1963, 1965, Rhyne and Legvold 1965). These basal plane strains are 100 to 10000 times typical magnetostrictions and still remain today the largest known (~1%). Over wide temperature ranges, thermal expansions are dominated by the temperature dependences of the magnetostrains. Elastic moduli were found to be strongly influenced by the unprecedented magnetoelastic interactions. However, because of the low ordering temperatures of the rare earths the application of these magnetostrictive properties to devices operating at room temperature could not be achieved with the elements. Only Gd, which is essentially non-magnetostrictive, possesses a Curie point as high as room temperature.

240 citations