scispace - formally typeset
Search or ask a question
Author

R. Pain

Bio: R. Pain is an academic researcher from University of Paris. The author has contributed to research in topics: Supernova & Redshift. The author has an hindex of 45, co-authored 144 publications receiving 13165 citations. Previous affiliations of R. Pain include Stockholm University & Centre national de la recherche scientifique.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors reported the discovery of a Type Ia supernova (SN 1997ap) at z = 0.83 at the Keck II 10m telescope.
Abstract: The ultimate fate of the universe, infinite expansion or a big crunch, can be determined by measuring the redshifts, apparent brightnesses, and intrinsic luminosities of very distant supernovae. Recent developments have provided tools that make such a program practicable: (1) Studies of relatively nearby Type Ia supernovae (SNe Ia) have shown that their intrinsic luminosities can be accurately determined; (2) New research techniques have made it possible to schedule the discovery and follow-up observations of distant supernovae, producing well over 50 very distant (z = 0.3 -- 0.7) SNe Ia to date. These distant supernovae provide a record of changes in the expansion rate over the past several billion years. By making precise measurements of supernovae at still greater distances, and thus extending this expansion history back far enough in time, we can distinguish the slowing caused by the gravitational attraction of the universe's mass density Omega_M from the effect of a possibly inflationary pressure caused by a cosmological constant Lambda. We report here the first such measurements, with our discovery of a Type Ia supernova (SN 1997ap) at z = 0.83. Measurements at the Keck II 10-m telescope make this the most distant spectroscopically confirmed supernova. Over two months of photometry of SN 1997ap with the Hubble Space Telescope and ground-based telescopes, when combined with previous measurements of nearer SNe Ia, suggests that we may live in a low mass-density universe. Further supernovae at comparable distances are currently scheduled for ground and space-based observations.

1,919 citations

Journal ArticleDOI
TL;DR: In this paper, a set of high-redshift supernovae were used to confirm previous supernova evidence for an accelerating universe, and the supernova results were combined with independent flat-universe measurements of the mass density from CMB and galaxy redshift distortion data, they provided a measurement of $w=-1.05^{+0.15}-0.09$ if w is assumed to be constant in time.
Abstract: We report measurements of $\Omega_M$, $\Omega_\Lambda$, and w from eleven supernovae at z=0.36-0.86 with high-quality lightcurves measured using WFPC-2 on the HST. This is an independent set of high-redshift supernovae that confirms previous supernova evidence for an accelerating Universe. Combined with earlier Supernova Cosmology Project data, the new supernovae yield a flat-universe measurement of the mass density $\Omega_M=0.25^{+0.07}_{-0.06}$ (statistical) $\pm0.04$ (identified systematics), or equivalently, a cosmological constant of $\Omega_\Lambda=0.75^{+0.06}_{-0.07}$ (statistical) $\pm0.04$ (identified systematics). When the supernova results are combined with independent flat-universe measurements of $\Omega_M$ from CMB and galaxy redshift distortion data, they provide a measurement of $w=-1.05^{+0.15}_{-0.20}$ (statistical) $\pm0.09$ (identified systematic), if w is assumed to be constant in time. The new data offer greatly improved color measurements of the high-redshift supernovae, and hence improved host-galaxy extinction estimates. These extinction measurements show no anomalous negative E(B-V) at high redshift. The precision of the measurements is such that it is possible to perform a host-galaxy extinction correction directly for individual supernovae without any assumptions or priors on the parent E(B-V) distribution. Our cosmological fits using full extinction corrections confirm that dark energy is required with $P(\Omega_\Lambda>0)>0.99$, a result consistent with previous and current supernova analyses which rely upon the identification of a low-extinction subset or prior assumptions concerning the intrinsic extinction distribution.

1,537 citations

Journal ArticleDOI
TL;DR: In this article, Kowalski et al. report on work to increase the number of well-measured Type Ia supernovae (SNe Ia) at high redshifts.
Abstract: We report on work to increase the number of well-measured Type Ia supernovae (SNe Ia) at high redshifts. Light curves, including high signal-to-noise HST data, and spectra of six SNe Ia that were discovered during 2001 are presented. Additionally, for the two SNe with z>1, we present ground-based J-band photometry from Gemini and the VLT. These are among the most distant SNe Ia for which ground based near-IR observations have been obtained. We add these six SNe Ia together with other data sets that have recently become available in the literature to the Union compilation (Kowalski et al. 2008). We have made a number of refinements to the Union analysis chain, the most important ones being the refitting of all light curves with the SALT2 fitter and an improved handling of systematic errors. We call this new compilation, consisting of 557 supernovae, the Union2 compilation. The flat concordance LambdaCDM model remains an excellent fit to the Union2 data with the best fit constant equation of state parameter w=-0.997^{+0.050}_{-0.054} (stat) ^{+0.077}_{-0.082} (stat+sys\ together) for a flat universe, or w=-1.035^{+0.055}_{-0.059} (stat)^{+0.093}_{-0.097} (stat+sys together) with curvature. We also present improved constraints on w(z). While no significant change in w with redshift is detected, there is still considerable room for evolution in w. The strength of the constraints depend strongly on redshift. In particular, at z > 1, the existence and nature of dark energy are only weakly constrained by the data.

1,273 citations

Journal ArticleDOI
TL;DR: In this article, the authors used a light-curve width-corrected magnitudes as a function of redshift of distant (z = 0.35-0.46) supernovae to obtain a global measurement of the mass density.
Abstract: We have developed a technique to systematically discover and study high-redshift supernovae that can be used to measure the cosmological parameters. We report here results based on the initial seven of more than 28 supernovae discovered to date in the high-redshift supernova search of the Supernova Cosmology Project. We find an observational dispersion in peak magnitudes of ? -->MB=0.27; this dispersion narrows to ?MB, corr=0.19 after correcting the magnitudes using the light-curve width-luminosity relation found for nearby (z ? 0.1) Type Ia supernovae from the Cal?n/Tololo survey (Hamuy et al.). Comparing light-curve width-corrected magnitudes as a function of redshift of our distant (z = 0.35-0.46) supernovae to those of nearby Type Ia supernovae yields a global measurement of the mass density, ?M${r M}$ -->=0.88 -->+ 0.69?0.60 for a ? = 0 cosmology. For a spatially flat universe (i.e., ?M + ?? = 1), we find ?M${r M}$ -->=0.94 -->+ 0.34?0.28 or, equivalently, a measurement of the cosmological constant, ??=0.06 -->+ 0.28?0.34 ( < 0.51 at the 95% confidence level). For the more general Friedmann-Lema?tre cosmologies with independent ?M and ??, the results are presented as a confidence region on the ?M-?? plane. This region does not correspond to a unique value of the deceleration parameter q0. We present analyses and checks for statistical and systematic errors and also show that our results do not depend on the specifics of the width-luminosity correction. The results for ??-versus-?M are inconsistent with ?-dominated, low-density, flat cosmologies that have been proposed to reconcile the ages of globular cluster stars with higher Hubble constant values.

1,272 citations

Journal ArticleDOI
TL;DR: In this paper, a technique to systematically discover and study high-redshift supernovae that can be used to measure the cosmological parameters has been developed, based on the initial seven of >28 supernova discovered to date in the Supernova Cosmology Project.
Abstract: We have developed a technique to systematically discover and study high-redshift supernovae that can be used to measure the cosmological parameters. We report here results based on the initial seven of >28 supernovae discovered to date in the high-redshift supernova search of the Supernova Cosmology Project. We find a dispersion in peak magnitudes of sigma_{M_B} = 0.27 this dispersion narrows to sigma_{M_B,corr} = 0.19 after "correcting" the magnitudes using the light-curve "width-luminosity" relation found for nearby (z <= 0.1) type Ia supernovae from the Calan/Tololo survey (Hamuy et al. 1996). Comparing lightcurve-width-corrected magnitudes as a function of redshift of our distant (z = 0.35-0.46) supernovae to those of nearby type Ia supernovae yields a global measurement of the mass density, Omega_M = 0.88^{+0.69}_{-0.60} for a Lambda = 0 cosmology. For a spatially flat universe (i.e., Omega_M +Omega_Lambda = 1), we find Omega_M = 0.94 ^{+0.34}_{-0.28} or, equivalently, a measurement of the cosmological constant, Omega_Lambda = 0.06 ^{+0.28}_{-0.34} (<0.51 at the 95% confidence level). For the more general Friedmann-Lemaitre cosmologies with independent Omega_M and Omega_Lambda, the results are presented as a confidence region on the Omega_M-Omega_Lambda plane. This region does not correspond to a unique value of the deceleration parameter q_0. We present analyses and checks for statistical and systematic errors, and also show that our results do not depend on the specifics of the width-luminosity correction. The results for Omega_Lambda-versus-Omega_M are inconsistent with Lambda-dominated, low density, flat cosmologies that have been proposed to reconcile the ages of globular cluster stars with higher Hubble constant values.

1,151 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the mass density, Omega_M, and cosmological-constant energy density of the universe were measured using the analysis of 42 Type Ia supernovae discovered by the Supernova Cosmology project.
Abstract: We report measurements of the mass density, Omega_M, and cosmological-constant energy density, Omega_Lambda, of the universe based on the analysis of 42 Type Ia supernovae discovered by the Supernova Cosmology Project. The magnitude-redshift data for these SNe, at redshifts between 0.18 and 0.83, are fit jointly with a set of SNe from the Calan/Tololo Supernova Survey, at redshifts below 0.1, to yield values for the cosmological parameters. All SN peak magnitudes are standardized using a SN Ia lightcurve width-luminosity relation. The measurement yields a joint probability distribution of the cosmological parameters that is approximated by the relation 0.8 Omega_M - 0.6 Omega_Lambda ~= -0.2 +/- 0.1 in the region of interest (Omega_M <~ 1.5). For a flat (Omega_M + Omega_Lambda = 1) cosmology we find Omega_M = 0.28{+0.09,-0.08} (1 sigma statistical) {+0.05,-0.04} (identified systematics). The data are strongly inconsistent with a Lambda = 0 flat cosmology, the simplest inflationary universe model. An open, Lambda = 0 cosmology also does not fit the data well: the data indicate that the cosmological constant is non-zero and positive, with a confidence of P(Lambda > 0) = 99%, including the identified systematic uncertainties. The best-fit age of the universe relative to the Hubble time is t_0 = 14.9{+1.4,-1.1} (0.63/h) Gyr for a flat cosmology. The size of our sample allows us to perform a variety of statistical tests to check for possible systematic errors and biases. We find no significant differences in either the host reddening distribution or Malmquist bias between the low-redshift Calan/Tololo sample and our high-redshift sample. The conclusions are robust whether or not a width-luminosity relation is used to standardize the SN peak magnitudes.

16,838 citations

Journal ArticleDOI
TL;DR: In this article, the authors used spectral and photometric observations of 10 Type Ia supernovae (SNe Ia) in the redshift range 0.16 " z " 0.62.
Abstract: We present spectral and photometric observations of 10 Type Ia supernovae (SNe Ia) in the redshift range 0.16 " z " 0.62. The luminosity distances of these objects are determined by methods that employ relations between SN Ia luminosity and light curve shape. Combined with previous data from our High-z Supernova Search Team and recent results by Riess et al., this expanded set of 16 high-redshift supernovae and a set of 34 nearby supernovae are used to place constraints on the following cosmo- logical parameters: the Hubble constant the mass density the cosmological constant (i.e., the (H 0 ), () M ), vacuum energy density, the deceleration parameter and the dynamical age of the universe ) " ), (q 0 ), ) M \ 1) methods. We estimate the dynamical age of the universe to be 14.2 ^ 1.7 Gyr including systematic uncer- tainties in the current Cepheid distance scale. We estimate the likely e†ect of several sources of system- atic error, including progenitor and metallicity evolution, extinction, sample selection bias, local perturbations in the expansion rate, gravitational lensing, and sample contamination. Presently, none of these e†ects appear to reconcile the data with and ) " \ 0 q 0 " 0.

16,674 citations

Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, Monique Arnaud3, M. Ashdown4  +334 moreInstitutions (82)
TL;DR: In this article, the authors present a cosmological analysis based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation.
Abstract: This paper presents cosmological results based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation. Our results are in very good agreement with the 2013 analysis of the Planck nominal-mission temperature data, but with increased precision. The temperature and polarization power spectra are consistent with the standard spatially-flat 6-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations (denoted “base ΛCDM” in this paper). From the Planck temperature data combined with Planck lensing, for this cosmology we find a Hubble constant, H0 = (67.8 ± 0.9) km s-1Mpc-1, a matter density parameter Ωm = 0.308 ± 0.012, and a tilted scalar spectral index with ns = 0.968 ± 0.006, consistent with the 2013 analysis. Note that in this abstract we quote 68% confidence limits on measured parameters and 95% upper limits on other parameters. We present the first results of polarization measurements with the Low Frequency Instrument at large angular scales. Combined with the Planck temperature and lensing data, these measurements give a reionization optical depth of τ = 0.066 ± 0.016, corresponding to a reionization redshift of . These results are consistent with those from WMAP polarization measurements cleaned for dust emission using 353-GHz polarization maps from the High Frequency Instrument. We find no evidence for any departure from base ΛCDM in the neutrino sector of the theory; for example, combining Planck observations with other astrophysical data we find Neff = 3.15 ± 0.23 for the effective number of relativistic degrees of freedom, consistent with the value Neff = 3.046 of the Standard Model of particle physics. The sum of neutrino masses is constrained to ∑ mν < 0.23 eV. The spatial curvature of our Universe is found to be very close to zero, with | ΩK | < 0.005. Adding a tensor component as a single-parameter extension to base ΛCDM we find an upper limit on the tensor-to-scalar ratio of r0.002< 0.11, consistent with the Planck 2013 results and consistent with the B-mode polarization constraints from a joint analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP B-mode data to our analysis leads to a tighter constraint of r0.002 < 0.09 and disfavours inflationarymodels with a V(φ) ∝ φ2 potential. The addition of Planck polarization data leads to strong constraints on deviations from a purely adiabatic spectrum of fluctuations. We find no evidence for any contribution from isocurvature perturbations or from cosmic defects. Combining Planck data with other astrophysical data, including Type Ia supernovae, the equation of state of dark energy is constrained to w = −1.006 ± 0.045, consistent with the expected value for a cosmological constant. The standard big bang nucleosynthesis predictions for the helium and deuterium abundances for the best-fit Planck base ΛCDM cosmology are in excellent agreement with observations. We also constraints on annihilating dark matter and on possible deviations from the standard recombination history. In neither case do we find no evidence for new physics. The Planck results for base ΛCDM are in good agreement with baryon acoustic oscillation data and with the JLA sample of Type Ia supernovae. However, as in the 2013 analysis, the amplitude of the fluctuation spectrum is found to be higher than inferred from some analyses of rich cluster counts and weak gravitational lensing. We show that these tensions cannot easily be resolved with simple modifications of the base ΛCDM cosmology. Apart from these tensions, the base ΛCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.

10,728 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present results based on full-mission Planck observations of temperature and polarization anisotropies of the CMB, which are consistent with the six-parameter inflationary LCDM cosmology.
Abstract: We present results based on full-mission Planck observations of temperature and polarization anisotropies of the CMB. These data are consistent with the six-parameter inflationary LCDM cosmology. From the Planck temperature and lensing data, for this cosmology we find a Hubble constant, H0= (67.8 +/- 0.9) km/s/Mpc, a matter density parameter Omega_m = 0.308 +/- 0.012 and a scalar spectral index with n_s = 0.968 +/- 0.006. (We quote 68% errors on measured parameters and 95% limits on other parameters.) Combined with Planck temperature and lensing data, Planck LFI polarization measurements lead to a reionization optical depth of tau = 0.066 +/- 0.016. Combining Planck with other astrophysical data we find N_ eff = 3.15 +/- 0.23 for the effective number of relativistic degrees of freedom and the sum of neutrino masses is constrained to < 0.23 eV. Spatial curvature is found to be |Omega_K| < 0.005. For LCDM we find a limit on the tensor-to-scalar ratio of r <0.11 consistent with the B-mode constraints from an analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP data leads to a tighter constraint of r < 0.09. We find no evidence for isocurvature perturbations or cosmic defects. The equation of state of dark energy is constrained to w = -1.006 +/- 0.045. Standard big bang nucleosynthesis predictions for the Planck LCDM cosmology are in excellent agreement with observations. We investigate annihilating dark matter and deviations from standard recombination, finding no evidence for new physics. The Planck results for base LCDM are in agreement with BAO data and with the JLA SNe sample. However the amplitude of the fluctuations is found to be higher than inferred from rich cluster counts and weak gravitational lensing. Apart from these tensions, the base LCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.

9,745 citations

Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, C. Armitage-Caplan3, Monique Arnaud4  +324 moreInstitutions (70)
TL;DR: In this paper, the authors present the first cosmological results based on Planck measurements of the cosmic microwave background (CMB) temperature and lensing-potential power spectra, which are extremely well described by the standard spatially-flat six-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations.
Abstract: This paper presents the first cosmological results based on Planck measurements of the cosmic microwave background (CMB) temperature and lensing-potential power spectra. We find that the Planck spectra at high multipoles (l ≳ 40) are extremely well described by the standard spatially-flat six-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations. Within the context of this cosmology, the Planck data determine the cosmological parameters to high precision: the angular size of the sound horizon at recombination, the physical densities of baryons and cold dark matter, and the scalar spectral index are estimated to be θ∗ = (1.04147 ± 0.00062) × 10-2, Ωbh2 = 0.02205 ± 0.00028, Ωch2 = 0.1199 ± 0.0027, and ns = 0.9603 ± 0.0073, respectively(note that in this abstract we quote 68% errors on measured parameters and 95% upper limits on other parameters). For this cosmology, we find a low value of the Hubble constant, H0 = (67.3 ± 1.2) km s-1 Mpc-1, and a high value of the matter density parameter, Ωm = 0.315 ± 0.017. These values are in tension with recent direct measurements of H0 and the magnitude-redshift relation for Type Ia supernovae, but are in excellent agreement with geometrical constraints from baryon acoustic oscillation (BAO) surveys. Including curvature, we find that the Universe is consistent with spatial flatness to percent level precision using Planck CMB data alone. We use high-resolution CMB data together with Planck to provide greater control on extragalactic foreground components in an investigation of extensions to the six-parameter ΛCDM model. We present selected results from a large grid of cosmological models, using a range of additional astrophysical data sets in addition to Planck and high-resolution CMB data. None of these models are favoured over the standard six-parameter ΛCDM cosmology. The deviation of the scalar spectral index from unity isinsensitive to the addition of tensor modes and to changes in the matter content of the Universe. We find an upper limit of r0.002< 0.11 on the tensor-to-scalar ratio. There is no evidence for additional neutrino-like relativistic particles beyond the three families of neutrinos in the standard model. Using BAO and CMB data, we find Neff = 3.30 ± 0.27 for the effective number of relativistic degrees of freedom, and an upper limit of 0.23 eV for the sum of neutrino masses. Our results are in excellent agreement with big bang nucleosynthesis and the standard value of Neff = 3.046. We find no evidence for dynamical dark energy; using BAO and CMB data, the dark energy equation of state parameter is constrained to be w = -1.13-0.10+0.13. We also use the Planck data to set limits on a possible variation of the fine-structure constant, dark matter annihilation and primordial magnetic fields. Despite the success of the six-parameter ΛCDM model in describing the Planck data at high multipoles, we note that this cosmology does not provide a good fit to the temperature power spectrum at low multipoles. The unusual shape of the spectrum in the multipole range 20 ≲ l ≲ 40 was seen previously in the WMAP data and is a real feature of the primordial CMB anisotropies. The poor fit to the spectrum at low multipoles is not of decisive significance, but is an “anomaly” in an otherwise self-consistent analysis of the Planck temperature data.

7,060 citations