scispace - formally typeset
Search or ask a question
Author

R. R. Young

Bio: R. R. Young is an academic researcher. The author has contributed to research in topics: Intracellular. The author has an hindex of 1, co-authored 1 publications receiving 314 citations.
Topics: Intracellular

Papers
More filters

Cited by
More filters
Journal ArticleDOI
TL;DR: Intradendritic recordings from Purkinje cells in vitro indicate that white matter stimulation produces large synaptic responses by the activation of the climbing fibre afferent, but antidromic potentials do not actively invade the dendritic tree.
Abstract: 1. Intradendritic recordings from Purkinje cells in vitro indicate that white matter stimulation produces large synaptic responses by the activation of the climbing fibre afferent, but antidromic potentials do not actively invade the dendritic tree. 2. Climbing fibre responses may be reversed in a manner similar to that observed at the somatic level. However, the reversal does not show the biphasicity often seen at somatic level. 3. Input resistance of these dendrites was found to range from 15 to 30 M omega. The non-linear properties seen at the somatic level for depolarizing currents are also encountered here. However, there seems to be less anomalous rectification. 4. Detailed analysis of repetitive firing of Purkinje cells elicited by outward DC current shows that, as in the case of the antidromic invasion, the fast somatic potentials (s.s.) do not invade the dendrite actively. However, the dendritic spike bursts (d.s.b.s) interposed between the s.s. potentials are most prominent at dendritic level. 5. Two types of voltage-dependent Ca responses were observed. At low stimulus level a plateau-like depolarization is accompanied by a prominent conductance change; further depolarization produces large dendritic action potentials. These two classes of response are TTX-resistant but are blocked by Cd, Co, Mn or D600, or by the removal of extracellular Ca. 6. Following blockage of the Ca conductance, plateau potentials produced by a non-inactivating Na conductance are observed mainly near the soma indicating that this voltage-dependent conductance is probably associated with the somatic membrane. 7. Spontaneous firing in Purkinje cell dendrites is very similar to that observed at the soma. However, the amplitude of these bursts is larger at dendritic level. It is further concluded that these TTX-insensitive spikes are generated at multiple sites along the dendritic tree. 8. Six ionic conductances seem to be involved in Purkinje cell electroresponsiveness: (a) an inactivating and (b) a non-inactivating Na conductance at or near the soma, (c) a spike- and (d) a plateau-generating Ca conductance, and (e) voltage-dependent and (f) Ca-dependent K currents. 9. The possible role of these conductances in Purkinje cell integration is discussed.

1,682 citations

Book ChapterDOI
TL;DR: This chapter provides an overview of the principal features of perikaryal responses to axon injury and changes in axotomized neurons are generally assessed by comparison with the corresponding contralateral neurons of the experimental animal.
Abstract: Publisher Summary This chapter provides an overview of the principal features of perikaryal responses to axon injury. The neuron is an unusual cell. Its axon terminals may be situated at what in cellular terms is an enormous distance from the cell body (perikaryon); the volume of the latter may be but a small fraction of the total cellular volume. Yet the neuronal processes are maintained and their substance is constantly renewed from the perikaryon. The separation of an axon from its cell body results (in vertebrates) in the degeneration of the separated portion and is followed by a series of morphological changes in the perikarya. The most conspicuous of these is the disintegration, redistribution, and apparent disappearance from the cell body of cytoplasmic basophil material. Changes in axotomized neurons are generally assessed by comparison with the corresponding contralateral neurons of the experimental animal.

1,017 citations

Journal ArticleDOI

868 citations

Journal ArticleDOI
TL;DR: An important direction for ongoing research is the development of therapeutic strategies that enhance axonal regeneration, promote selective target reinnervation, but are also able to modulate central nervous system reorganization, amplifying those positive adaptive changes that help to improve functional recovery but also diminishing undesirable consequences.

787 citations