scispace - formally typeset
Search or ask a question
Author

R. Sathyavathi

Bio: R. Sathyavathi is an academic researcher from University of Hyderabad. The author has contributed to research in topics: Surface-enhanced Raman spectroscopy & Silver nanoparticle. The author has an hindex of 9, co-authored 17 publications receiving 730 citations. Previous affiliations of R. Sathyavathi include K L University & Indian Institute of Technology, Jodhpur.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a simple and eco-friendly biosynthesis of silver nanoparticles using Coriandrum sativum leaf extract as reducing agent was presented, where the aqueous silver ions when exposed to leaf extract were reduced and resulted in the average size of 26 nm, which was characterized by UV-Visible, X-ray diffraction, Fourier transform infra-red spectroscopy (FT-IR), and transmission electron microscopy (TEM) techniques.
Abstract: We present a simple and eco-friendly biosynthesis of silver nanoparticles using Coriandrum sativum leaf extract as reducing agent. The aqueous silver ions when exposed to leaf extract were reduced and resulted in silver nanoparticles whose average size is 26 nm. The silver nanoparticles were characterized by UV-Visible, X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FT-IR) and transmission electron microscopy (TEM) techniques. Nonlinear optical properties of silver nanoparticles were studied using Z-scan technique with 6 ns pulse duration at 532 nm. The nonlinear refractive index and third-order susceptibility 3 were measured to be ∼ 6 0×10−13 cm2/W and 1 38×10−9 esu, respectively. Silver nanoparticles were found to exhibit strong reverse saturable absorption (RSA). RSA was identified as the main mechanism responsible for optical limiting.

455 citations

Journal ArticleDOI
TL;DR: In this article, a highly efficient Surface Enhanced Raman Scattering (SERS) substrate was prepared using a nanocluster deposition system that enabled detection of Crystal Violet molecules down to a single molecule level.

61 citations

Journal ArticleDOI
TL;DR: All four sizes of CdSe nanoparticles show the positive nonlinear refraction (n2), and both the quantum dots 5nm, 10nm, 25nm and 400nm show the three photon absorption properties.
Abstract: We report a systematic investigation on nonlinear optical properties of CdSe nanoparticles that are smaller as well as larger than the Bohr radius. Multiphoton absorption and nonlinear refraction properties of CdSe nanoparticles observed with 800nm wavelength and 110femtosecond Ti:Sapphire laser are presented. These nonlinear optical studies were undertaken by performing open and closed aperture Z-scan measurements. The four different sizes of CdSe nanoparticles investigated are 5nm, 10nm, 25nm and 400nm. Both the quantum dots 5nm, 10nm sizes (taking the literature value of 10.6nm as the Bohr exciton diameter) show four photon absorption (4PA), while the 25nm and 400nm show the three photon absorption (3PA) properties. All four sizes of CdSe nanoparticles show the positive nonlinear refraction (n2).

57 citations

Journal ArticleDOI
TL;DR: It is found that, AgNPs (between 20 and 100 μM) are biocompatible in nature through pertaining >80% viability of macrophages, and the enhanced antileishmanial activity of miltefosine with silver-nanoparticles synthesized by using Anethum graveolens (dill) leaf extract as reducing agent is studied.

53 citations

Journal ArticleDOI
TL;DR: The biosynthesis of silver nanoparticles using Moringa oleifera leaf extract as reducing and stabilizing agent and its application in nonlinear optics is presented and it is shown that these biosynthesizedSilver nanoparticles possess very good nonlinear properties similar to those nanoparticles synthesized by chemical route.
Abstract: The Development of biologically inspired experimental processes for the synthesis of nanoparticles is evolving into an important branch of nanotechnology. The work presented here with the biosynthesis of silver nanoparticles using Moringa oleifera leaf extract as reducing and stabilizing agent and its application in nonlinear optics. The aqueous silver ions when exposed to Moringa oleifera leaf extract are reduced resulting in silver nanoparticles demonstrating the biosynthesis. The silver nanoparticles were characterized by UV-Visible, X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FT-IR) and transmission electron microscopy (TEM) techniques. TEM analysis shows a dispersion of the nanoparticles in a range of 5-80 nm with the average around 46 nm and are crystallized in face centred cubic symmetry. To show that these biosynthesized silver nanoparticles possess very good nonlinear properties similar to those nanoparticles synthesized by chemical route, we carried out the Z-scan studies with a 6 ns, 532 nm pulsed laser. We estimated the nonlinear absorption coefficient and compare it with the literature values of the nanoparticles synthesized through chemical route. The silver nanoparticles suspended in solution exhibited reverse saturable absorption with optical limiting threshold of 100 mJ/cm2.

52 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A comprehensive view on the mechanism of action, production, applications in the medical field, and health and environmental concerns that are allegedly caused due to these nanoparticles is provided in this paper.
Abstract: Silver nanoparticles are nanoparticles of silver which are in the range of 1 and 100 nm in size. Silver nanoparticles have unique properties which help in molecular diagnostics, in therapies, as well as in devices that are used in several medical procedures. The major methods used for silver nanoparticle synthesis are the physical and chemical methods. The problem with the chemical and physical methods is that the synthesis is expensive and can also have toxic substances absorbed onto them. To overcome this, the biological method provides a feasible alternative. The major biological systems involved in this are bacteria, fungi, and plant extracts. The major applications of silver nanoparticles in the medical field include diagnostic applications and therapeutic applications. In most of the therapeutic applications, it is the antimicrobial property that is being majorly explored, though the anti-inflammatory property has its fair share of applications. Though silver nanoparticles are rampantly used in many medical procedures and devices as well as in various biological fields, they have their drawbacks due to nanotoxicity. This review provides a comprehensive view on the mechanism of action, production, applications in the medical field, and the health and environmental concerns that are allegedly caused due to these nanoparticles. The focus is on effective and efficient synthesis of silver nanoparticles while exploring their various prospective applications besides trying to understand the current scenario in the debates on the toxicity concerns these nanoparticles pose.

1,852 citations

Journal ArticleDOI
23 Sep 1974-JAMA
TL;DR: A great strength of the subject of pathology is that it bonds strongly with many other medical sciences and specialties and thus occupies the top spot in the field.
Abstract: Pathologic Basis of Diseaseby Stanley L. Robbins is really the fourth edition of hisPathology. Appropriate updating and addition enhance the otherwise identical format, sequence, writing, and illustrations. So many medical students have benefited from this source that it may be the best known general book in the field. I recommend it even more now. Like his former texts, this will be enjoyed for its readability. He clearly lays out a great deal of information. When he includes minutiae, the reasons are clear and one feels that all the material is pertinent. Robbins keeps the whole field in perspective—that is, he does not dwell so long or so heavily on pathologic anatomy or pathogenesis as to tempt the reader to overlook clinical presentation or prognosis. A great strength of the subject of pathology is that it bonds strongly with many other medical sciences and specialties and thus occupies the

1,230 citations

Journal ArticleDOI
TL;DR: In this article, the authors review recent progress in the understanding of effects of irradiation on various zero-dimensional and one-dimensional nanoscale systems, such as semiconductor and metal nanoclusters and nanowires, nanotubes, and fullerenes.
Abstract: A common misconception is that the irradiation of solids with energetic electrons and ions has exclusively detrimental effects on the properties of target materials. In addition to the well-known cases of doping of bulk semiconductors and ion beam nitriding of steels, recent experiments show that irradiation can also have beneficial effects on nanostructured systems. Electron or ion beams may serve as tools to synthesize nanoclusters and nanowires, change their morphology in a controllable manner, and tailor their mechanical, electronic, and even magnetic properties. Harnessing irradiation as a tool for modifying material properties at the nanoscale requires having the full microscopic picture of defect production and annealing in nanotargets. In this article, we review recent progress in the understanding of effects of irradiation on various zero-dimensional and one-dimensional nanoscale systems, such as semiconductor and metal nanoclusters and nanowires, nanotubes, and fullerenes. We also consider the t...

905 citations

Journal ArticleDOI
TL;DR: In this article, the authors used hot water olive leaf extracts (OLE) as reducing and stabilizing agent for antibacterial activity against drug resistant bacterial isolates and found that the AgNPs at 0.03-0.07 mg/ml concentration significantly inhibited bacterial growth against multi-drug resistant Staphylococcus aureus (S. aUREus ), Pseudomonas aeruginosa (P. aerUGinosa ), and Escherichia coli ( E. coli ).

596 citations

Journal ArticleDOI
TL;DR: The recent advances in green synthesis of silver nanoparticles, their application as antimicrobial agents and mechanism of antimicrobial mode of action are discussed.
Abstract: Since discovery of the first antibiotic drug, penicillin, in 1928, a variety of antibiotic and antimicrobial agents have been developed and used for both human therapy and industrial applications. However, excess and uncontrolled use of antibiotic agents has caused a significant growth in the number of drug resistant pathogens. Novel therapeutic approaches replacing the inefficient antibiotics are in high demand to overcome increasing microbial multidrug resistance. In the recent years, ongoing research has focused on development of nano-scale objects as efficient antimicrobial therapies. Among the various nanoparticles, silver nanoparticles have gained much attention due to their unique antimicrobial properties. However, concerns about the synthesis of these materials such as use of precursor chemicals and toxic solvents, and generation of toxic byproducts have led to a new alternative approach, green synthesis. This eco-friendly technique incorporates use of biological agents, plants or microbial agents as reducing and capping agents. Silver nanoparticles synthesized by green chemistry offer a novel and potential alternative to chemically synthesized nanoparticles. In this review, we discuss the recent advances in green synthesis of silver nanoparticles, their application as antimicrobial agents and mechanism of antimicrobial mode of action.

579 citations