scispace - formally typeset
Search or ask a question
Author

R. Schnitzhofer

Bio: R. Schnitzhofer is an academic researcher from University of Innsbruck. The author has contributed to research in topics: Eddy covariance & Cloud condensation nuclei. The author has an hindex of 20, co-authored 28 publications receiving 2968 citations.

Papers
More filters
Journal ArticleDOI
25 Aug 2011-Nature
TL;DR: First results from the CLOUD experiment at CERN are presented, finding that atmospherically relevant ammonia mixing ratios of 100 parts per trillion by volume, or less, increase the nucleation rate of sulphuric acid particles more than 100–1,000-fold and ion-induced binary nucleation of H2SO4–H2O can occur in the mid-troposphere but is negligible in the boundary layer.
Abstract: Atmospheric aerosols exert an important influence on climate through their effects on stratiform cloud albedo and lifetime and the invigoration of convective storms. Model calculations suggest that almost half of the global cloud condensation nuclei in the atmospheric boundary layer may originate from the nucleation of aerosols from trace condensable vapours, although the sensitivity of the number of cloud condensation nuclei to changes of nucleation rate may be small. Despite extensive research, fundamental questions remain about the nucleation rate of sulphuric acid particles and the mechanisms responsible, including the roles of galactic cosmic rays and other chemical species such as ammonia. Here we present the first results from the CLOUD experiment at CERN. We find that atmospherically relevant ammonia mixing ratios of 100 parts per trillion by volume, or less, increase the nucleation rate of sulphuric acid particles more than 100–1,000-fold. Time-resolved molecular measurements reveal that nucleation proceeds by a base-stabilization mechanism involving the stepwise accretion of ammonia molecules. Ions increase the nucleation rate by an additional factor of between two and more than ten at ground-level galactic-cosmic-ray intensities, provided that the nucleation rate lies below the limiting ion-pair production rate. We find that ion-induced binary nucleation of H_(2)SO_(4)–H_(2)O can occur in the mid-troposphere but is negligible in the boundary layer. However, even with the large enhancements in rate due to ammonia and ions, atmospheric concentrations of ammonia and sulphuric acid are insufficient to account for observed boundary-layer nucleation.

1,071 citations

Journal ArticleDOI
Joao Almeida1, Joao Almeida2, Siegfried Schobesberger3, Andreas Kürten1, Ismael K. Ortega3, Oona Kupiainen-Määttä3, Arnaud P. Praplan4, Alexey Adamov3, António Amorim5, F. Bianchi4, Martin Breitenlechner6, A. David2, Josef Dommen4, Neil M. Donahue7, Andrew J. Downard8, Eimear M. Dunne9, Jonathan Duplissy3, Sebastian Ehrhart1, Richard C. Flagan8, Alessandro Franchin3, Roberto Guida2, Jani Hakala3, Armin Hansel6, Martin Heinritzi6, Henning Henschel3, Tuija Jokinen3, Heikki Junninen3, Maija Kajos3, Juha Kangasluoma3, Helmi Keskinen10, Agnieszka Kupc11, Theo Kurtén3, Alexander N. Kvashin12, Ari Laaksonen13, Ari Laaksonen10, Katrianne Lehtipalo3, Markus Leiminger1, Johannes Leppä13, Ville Loukonen3, Vladimir Makhmutov12, Serge Mathot2, Matthew J. McGrath14, Tuomo Nieminen3, Tuomo Nieminen15, Tinja Olenius3, Antti Onnela2, Tuukka Petäjä3, Francesco Riccobono4, Ilona Riipinen16, Matti P. Rissanen3, Linda Rondo1, Taina Ruuskanen3, Filipe Duarte Santos5, Nina Sarnela3, Simon Schallhart3, R. Schnitzhofer6, John H. Seinfeld8, Mario Simon1, Mikko Sipilä3, Mikko Sipilä15, Yuri Stozhkov12, Frank Stratmann17, António Tomé5, Jasmin Tröstl4, Georgios Tsagkogeorgas17, Petri Vaattovaara10, Yrjö Viisanen13, Annele Virtanen10, Aron Vrtala11, Paul E. Wagner11, Ernest Weingartner4, Heike Wex17, Christina Williamson1, Daniela Wimmer1, Daniela Wimmer3, Penglin Ye7, Taina Yli-Juuti3, Kenneth S. Carslaw9, Markku Kulmala15, Markku Kulmala3, Joachim Curtius1, Urs Baltensperger4, Douglas R. Worsnop, Hanna Vehkamäki3, Jasper Kirkby2, Jasper Kirkby1 
17 Oct 2013-Nature
TL;DR: The results show that, in regions of the atmosphere near amine sources, both amines and sulphur dioxide should be considered when assessing the impact of anthropogenic activities on particle formation.
Abstract: Nucleation of aerosol particles from trace atmospheric vapours is thought to provide up to half of global cloud condensation nuclei(1). Aerosols can cause a net cooling of climate by scattering sun ...

738 citations

Journal ArticleDOI
TL;DR: High-resolution mass spectra of ion clusters observed during new particle formation experiments performed at the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research confirm that oxidized organics are involved in both the formation and growth of particles under ambient conditions.
Abstract: Atmospheric aerosols formed by nucleation of vapors affect radiative forcing and therefore climate. However, the underlying mechanisms of nucleation remain unclear, particularly the involvement of organic compounds. Here, we present high-resolution mass spectra of ion clusters observed during new particle formation experiments performed at the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research. The experiments involved sulfuric acid vapor and different stabilizing species, including ammonia and dimethylamine, as well as oxidation products of pinanediol, a surrogate for organic vapors formed from monoterpenes. A striking resemblance is revealed between the mass spectra from the chamber experiments with oxidized organics and ambient data obtained during new particle formation events at the Hyytiala boreal forest research station. We observe that large oxidized organic compounds, arising from the oxidation of monoterpenes, cluster directly with single sulfuric acid molecules and then form growing clusters of one to three sulfuric acid molecules plus one to four oxidized organics. Most of these organic compounds retain 10 carbon atoms, and some of them are remarkably highly oxidized (oxygen-to-carbon ratios up to 1.2). The average degree of oxygenation of the organic compounds decreases while the clusters are growing. Our measurements therefore connect oxidized organics directly, and in detail, with the very first steps of new particle formation and their growth between 1 and 2 nm in a controlled environment. Thus, they confirm that oxidized organics are involved in both the formation and growth of particles under ambient conditions.

301 citations

Journal ArticleDOI
TL;DR: The findings strongly indicate that the temporal evolution of V OC emissions during growth must be considered if characterization or differentiation based on microbial VOC emissions is attempted, and may help to establish the analysis of VOCs by on-line PTR-MS as a routine method in microbiology and as a tool for monitoring environmental and biotechnological processes.
Abstract: A method for analysis of volatile organic compounds (VOCs) from microbial cultures was established using proton transfer reaction-mass spectrometry (PTR-MS). A newly developed sampling system was coupled to a PTR-MS instrument to allow on-line monitoring of VOCs in the dynamic headspaces of microbial cultures. The novel PTR-MS method was evaluated for four reference organisms: Escherichia coli, Shigella flexneri, Salmonella enterica, and Candida tropicalis. Headspace VOCs in sampling bottles containing actively growing cultures and uninoculated culture medium controls were sequentially analyzed by PTR-MS. Characteristic marker ions were found for certain microbial cultures: C. tropicalis could be identified by several unique markers compared with the other three organisms, and E. coli and S. enterica were distinguishable from each other and from S. flexneri by specific marker ions, demonstrating the potential of this method to differentiate between even closely related microorganisms. Although the temporal profiles of some VOCs were similar to the growth dynamics of the microbial cultures, most VOCs showed a different temporal profile, characterized by constant or decreasing VOC levels or by single or multiple peaks over 24 h of incubation. These findings strongly indicate that the temporal evolution of VOC emissions during growth must be considered if characterization or differentiation based on microbial VOC emissions is attempted. Our study may help to establish the analysis of VOCs by on-line PTR-MS as a routine method in microbiology and as a tool for monitoring environmental and biotechnological processes.

208 citations

Journal ArticleDOI
26 May 2011-PLOS ONE
TL;DR: Proton transfer reaction-time of flight (PTR-TOF) mass spectrometry was used to improve detection of biogenic volatiles organic compounds (BVOCs) induced by leaf wounding and darkening, confirming to be an excellent indicator of mechanical damage.
Abstract: Proton transfer reaction-time of flight (PTR-TOF) mass spectrometry was used to improve detection of biogenic volatiles organic compounds (BVOCs) induced by leaf wounding and darkening. PTR-TOF measurements unambiguously captured the kinetic of the large emissions of green leaf volatiles (GLVs) and acetaldehyde after wounding and darkening. GLVs emission correlated with the extent of wounding, thus confirming to be an excellent indicator of mechanical damage. Transient emissions of methanol, C5 compounds and isoprene from plant species that do not emit isoprene constitutively were also detected after wounding. In the strong isoprene-emitter Populus alba, light-dependent isoprene emission was sustained and even enhanced for hours after photosynthesis inhibition due to leaf cutting. Thus isoprene emission can uncouple from photosynthesis and may occur even after cutting leaves or branches, e.g., by agricultural practices or because of abiotic and biotic stresses. This observation may have important implications for assessments of isoprene sources and budget in the atmosphere, and consequences for tropospheric chemistry.

159 citations


Cited by
More filters
Book ChapterDOI
01 Jan 2014
TL;DR: Myhre et al. as discussed by the authors presented the contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) 2013: Anthropogenic and Natural Radiative forcing.
Abstract: This chapter should be cited as: Myhre, G., D. Shindell, F.-M. Bréon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J.-F. Lamarque, D. Lee, B. Mendoza, T. Nakajima, A. Robock, G. Stephens, T. Takemura and H. Zhang, 2013: Anthropogenic and Natural Radiative Forcing. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Coordinating Lead Authors: Gunnar Myhre (Norway), Drew Shindell (USA)

3,684 citations

Journal ArticleDOI
27 Feb 2014-Nature
TL;DR: It is found that a direct pathway leads from several biogenic VOCs, such as monoterpenes, to the formation of large amounts of extremely low-volatility vapours, helping to explain the discrepancy between the observed atmospheric burden of secondary organic aerosol and that reported by many model studies.
Abstract: Forests emit large quantities of volatile organic compounds (VOCs) to the atmosphere. Their condensable oxidation products can form secondary organic aerosol, a significant and ubiquitous component of atmospheric aerosol, which is known to affect the Earth's radiation balance by scattering solar radiation and by acting as cloud condensation nuclei. The quantitative assessment of such climate effects remains hampered by a number of factors, including an incomplete understanding of how biogenic VOCs contribute to the formation of atmospheric secondary organic aerosol. The growth of newly formed particles from sizes of less than three nanometres up to the sizes of cloud condensation nuclei (about one hundred nanometres) in many continental ecosystems requires abundant, essentially non-volatile organic vapours, but the sources and compositions of such vapours remain unknown. Here we investigate the oxidation of VOCs, in particular the terpene α-pinene, under atmospherically relevant conditions in chamber experiments. We find that a direct pathway leads from several biogenic VOCs, such as monoterpenes, to the formation of large amounts of extremely low-volatility vapours. These vapours form at significant mass yield in the gas phase and condense irreversibly onto aerosol surfaces to produce secondary organic aerosol, helping to explain the discrepancy between the observed atmospheric burden of secondary organic aerosol and that reported by many model studies. We further demonstrate how these low-volatility vapours can enhance, or even dominate, the formation and growth of aerosol particles over forested regions, providing a missing link between biogenic VOCs and their conversion to aerosol particles. Our findings could help to improve assessments of biosphere-aerosol-climate feedback mechanisms, and the air quality and climate effects of biogenic emissions generally.

1,340 citations

Journal ArticleDOI
Joao Almeida1, Joao Almeida2, Siegfried Schobesberger3, Andreas Kürten1, Ismael K. Ortega3, Oona Kupiainen-Määttä3, Arnaud P. Praplan4, Alexey Adamov3, António Amorim5, F. Bianchi4, Martin Breitenlechner6, A. David2, Josef Dommen4, Neil M. Donahue7, Andrew J. Downard8, Eimear M. Dunne9, Jonathan Duplissy3, Sebastian Ehrhart1, Richard C. Flagan8, Alessandro Franchin3, Roberto Guida2, Jani Hakala3, Armin Hansel6, Martin Heinritzi6, Henning Henschel3, Tuija Jokinen3, Heikki Junninen3, Maija Kajos3, Juha Kangasluoma3, Helmi Keskinen10, Agnieszka Kupc11, Theo Kurtén3, Alexander N. Kvashin12, Ari Laaksonen13, Ari Laaksonen10, Katrianne Lehtipalo3, Markus Leiminger1, Johannes Leppä13, Ville Loukonen3, Vladimir Makhmutov12, Serge Mathot2, Matthew J. McGrath14, Tuomo Nieminen3, Tuomo Nieminen15, Tinja Olenius3, Antti Onnela2, Tuukka Petäjä3, Francesco Riccobono4, Ilona Riipinen16, Matti P. Rissanen3, Linda Rondo1, Taina Ruuskanen3, Filipe Duarte Santos5, Nina Sarnela3, Simon Schallhart3, R. Schnitzhofer6, John H. Seinfeld8, Mario Simon1, Mikko Sipilä15, Mikko Sipilä3, Yuri Stozhkov12, Frank Stratmann17, António Tomé5, Jasmin Tröstl4, Georgios Tsagkogeorgas17, Petri Vaattovaara10, Yrjö Viisanen13, Annele Virtanen10, Aron Vrtala11, Paul E. Wagner11, Ernest Weingartner4, Heike Wex17, Christina Williamson1, Daniela Wimmer3, Daniela Wimmer1, Penglin Ye7, Taina Yli-Juuti3, Kenneth S. Carslaw9, Markku Kulmala3, Markku Kulmala15, Joachim Curtius1, Urs Baltensperger4, Douglas R. Worsnop, Hanna Vehkamäki3, Jasper Kirkby2, Jasper Kirkby1 
17 Oct 2013-Nature
TL;DR: The results show that, in regions of the atmosphere near amine sources, both amines and sulphur dioxide should be considered when assessing the impact of anthropogenic activities on particle formation.
Abstract: Nucleation of aerosol particles from trace atmospheric vapours is thought to provide up to half of global cloud condensation nuclei(1). Aerosols can cause a net cooling of climate by scattering sun ...

738 citations

Journal ArticleDOI
TL;DR: The literature on atmospheric particulate maffer (PM), or atmospheric aerosol, has increased enormously over the last 2 decades and amounts now to some 1500-2000 papers per year in the refereed literature.
Abstract: The literature on atmospheric particulate maffer (PM), or atmospheric aerosol, has increased enormously over the last 2 decades and amounts now to some 1500—2000 papers per year in the refereed literature. This is in part due to the enormous advances in measurement technologies, which have allowed for an increasingly accurate understanding of the chemical composition and of the physical properties of atmospheric particles and of their processes in the atmosphere. The growing scientific interest in atmospheric aerosol particles is due to their high importance for environmental policy. In fact, particulate maffer constitutes one of the most challenging problems both for air quality and for climate change policies. In this context, this paper reviews the most recent results within the atmospheric aerosol sciences and thepoticy needs, which have driven much ofthe increase in monitoring and mechanistic research over the last 2 decades. The synthesis reveals many new processes and developments in the science underpinning climate—aerosol interactions and effects of PM on human health and the environment. However, while airborne particulate matter is responsible for globally important influences on premature human mortality, we stijl do not know the relative importance of the different chemical components of PM for these effects. Likewise, the magnitude of the overall effects of PM on climate remains highly uncertain. Despite the uncertainty there are many things that could be done to mitigate local and global problems of atmospheric PM. Recent analyses have shown that reducing black carbon (BC) emissions, using known control measures, would reduce global wanning and delay the time when anthropogenic effects on global temperature would exceed 2°C. Likewise, cost-effective control measures on ammonia, an important agricultural precursor gas for secondary inorganic aerosols (SlA), would reduce regional eutrophication and PM concentrations in large areas of Europe, China and the USA. Thus, there is much that could be done to reduce the effects of atmospheric PM on the climate and the health of the environment and the human population. A prioritized list of actions to mitigate the full range of effects ofPM is currently undeliverable due to shortcomings in the knowledge of aerosol science; among the shortcomings, the roles of PM in global climate and the relative roles of different PM precursor sources and their response to climate and land use change over the remaining decades of this century are prominent. In any case, the evidence from this paper strongly advocates for an integrated approach to air quality and climate policies.

648 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed soil emission studies involving the most important land-cover types and climate zones and introduced important measuring systems for soil emissions, which leads to global annual net soil emissions of ≥ 350 Pg CO 2 e (CO 2 e = CO 2 equivalents = total effect of all GHG normalized to CO 2 ).
Abstract: Soils act as sources and sinks for greenhouse gases (GHG) such as carbon dioxide (CO 2 ), methane (CH 4 ), and nitrous oxide (N 2 O). Since both storage and emission capacities may be large, precise quantifications are needed to obtain reliable global budgets that are necessary for land-use management (agriculture, forestry), global change and for climate research. This paper discusses exclusively the soil emission-related processes and their influencing parameters. It reviews soil emission studies involving the most important land-cover types and climate zones and introduces important measuring systems for soil emissions. It addresses current shortcomings and the obvious bias towards northern hemispheric data. When using a conservative average of 300 mg CO 2 e m −2 h −1 (based on our literature review), this leads to global annual net soil emissions of ≥350 Pg CO 2 e (CO 2 e = CO 2 equivalents = total effect of all GHG normalized to CO 2 ). This corresponds to roughly 21% of the global soil C and N pools. For comparison, 33.4 Pg CO 2 are being emitted annually by fossil fuel combustion and the cement industry.

646 citations