scispace - formally typeset
Search or ask a question
Author

R. Stuart Haszeldine

Bio: R. Stuart Haszeldine is an academic researcher from University of Edinburgh. The author has contributed to research in topics: Carbon capture and storage (timeline) & Climate change mitigation. The author has an hindex of 23, co-authored 40 publications receiving 2855 citations. Previous affiliations of R. Stuart Haszeldine include University of Strathclyde & University of Glasgow.


Papers
More filters
Journal ArticleDOI
25 Sep 2009-Science
TL;DR: Urgent action is required if carbon capture and storage is to play a large role in limiting climate change, and many technological, commercial, and political hurdles remain to be overcome.
Abstract: The capture of carbon dioxide at the point of emission from coal- or gas-burning power plants is an attractive route to reducing carbon dioxide emissions into the atmosphere. To commercialize carbon capture, as well as transport of liquified carbon dioxide and its storage in exploited oil fields or saline formations, many technological, commercial, and political hurdles remain to be overcome. Urgent action is required if carbon capture and storage is to play a large role in limiting climate change.

1,674 citations

Journal ArticleDOI
TL;DR: In this article, the authors argue that the very limited implementation of carbon capture and storage technology so far is largely the result of political, economic and social factors, rather than a technological inability to deliver.
Abstract: Carbon capture and storage is a climate mitigation technology designed to reduce emissions from fossil-fuel power plants and industrial sources. This Perspective argues that the very limited implementation of carbon capture and storage technology so far is largely the result of political, economic and social factors, rather than a technological inability to deliver.

307 citations

Journal ArticleDOI
TL;DR: The global balance between fossil carbon supply and the sufficiency (size) and capability (technology, security) of candidate carbon stores is assessed and a hierarchy of value for extraction-to-storage pairings is proposed.
Abstract: The useful energy services and energy density value of fossil carbon fuels could be retained for longer timescales into the future if their combustion is balanced by CO2 recapture and storage. We assess the global balance between fossil carbon supply and the sufficiency (size) and capability (technology, security) of candidate carbon stores. A hierarchy of value for extraction-to-storage pairings is proposed, which is augmented by classification of CO2 containment as temporary ( 100,000 yr). Using temporary stores is inefficient and defers an intergenerational problem. Permanent storage capacity is adequate to technically match current fossil fuel reserves. However, rates of storage creation cannot balance current and expected rates of fossil fuel extraction and CO2 consequences. Extraction of conventional natural gas is uniquely holistic because it creates the capacity to re-inject an equivalent tonnage of carbon for storage into the same reservoir and can re-use gas-extraction infrastructure for storage. By contrast, balancing the extraction of coal, oil, biomass and unconventional fossil fuels requires the engineering and validation of additional carbon storage. Such storage is, so far, unproven in sufficiency.

97 citations

Journal ArticleDOI
01 Oct 2001-Geology
TL;DR: In this paper, the authors examined whether the presence of oil in the pore space can retard or halt this loss of porosity by slowing or stopping quartz cementation, and showed that early oil charging in the crestal part of an anticline can preserve porosity in deeply buried sandstones.
Abstract: When quartz-rich sands are buried and heated, pore space is gradually filled by precipitation of quartz cement from aqueous formation fluids. Here we examine whether the presence of oil in the pore space can retard or halt this loss of porosity by slowing or stopping quartz cementation. The effect of oil fill on quartz cementation is examined by using the distribution of quartz cement in the Brae Formation deep-water sandstone reservoir of the Miller oil field (North Sea). Petrographic data demonstrate that sandstones from the oil zone have much less quartz cement, and more porosity, than sandstones from the water zone. Sandstones in both oil and water zones are compositionally and texturally identical and have been affected by a similar burial history. Kinetic modeling of the cementation process suggests that progressive oil charging has slowed quartz-cement growth rates by at least two orders of magnitude, halting it completely in the most extreme cases. Our data demonstrate that early oil charging in the crestal part of an anticline can preserve porosity in deeply buried sandstones. This knowledge is especially relevant to porosity prediction for petroleum exploration in deeply buried sandstones.

83 citations

Journal ArticleDOI
01 Jan 2009-Geology
TL;DR: In this article, stable isotopes of carbon from carbonate minerals in the mudrock that have precipitated in contact with CO 2 during 4 km of burial were reported, and a well-defi ned linear trend of upward-decreasing δ 13 C traces the progressive penetration of free-phase CO 2 causing dissolution and reprecipitation of carbonate mineral.
Abstract: The ability of mudrock seals to prevent CO 2 leakage is a major concern for geological storage of anthropogenic CO 2 . The long-term performance of a mudrock seal, which provides a natural analogue, in the North Sea Miller oil fi eld has been evaluated. This mudrock seal is immediately above a natural CO 2 -rich reservoir. The paper reports the stable isotopes of carbon from carbonate minerals in the mudrock that have precipitated in contact with CO 2 during 4 km of burial. A well-defi ned linear trend of upward-decreasing δ 13 C traces the progressive penetration of free-phase CO 2 causing dissolution and reprecipitation of carbonate minerals. The CO 2 was emplaced ca. 70‐80 Ma, and has only penetrated 12 m vertically in this case. The infi ltration rate is estimated as ~9.8 ◊ 10 ‐7 g cm ‐2 yr ‐1

75 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Kenji Sumida, David L. Rogow, Jarad A. Mason, Thomas M. McDonald, Eric D. Bloch, Zoey R. Herm, Tae-Hyun Bae, Jeffrey R. Long
Abstract: Kenji Sumida, David L. Rogow, Jarad A. Mason, Thomas M. McDonald, Eric D. Bloch, Zoey R. Herm, Tae-Hyun Bae, Jeffrey R. Long

5,389 citations

Journal ArticleDOI
TL;DR: The most recent developments and emerging concepts in CO(2) separations by solvent absorption, chemical and physical adsorption, and membranes, amongst others, will be discussed, with particular attention on progress in the burgeoning field of metal-organic frameworks.
Abstract: The escalating level of atmospheric carbon dioxide is one of the most pressing environmental concerns of our age. Carbon capture and storage (CCS) from large point sources such as power plants is one option for reducing anthropogenic CO(2) emissions; however, currently the capture alone will increase the energy requirements of a plant by 25-40%. This Review highlights the challenges for capture technologies which have the greatest likelihood of reducing CO(2) emissions to the atmosphere, namely postcombustion (predominantly CO(2)/N(2) separation), precombustion (CO(2)/H(2)) capture, and natural gas sweetening (CO(2)/CH(4)). The key factor which underlies significant advancements lies in improved materials that perform the separations. In this regard, the most recent developments and emerging concepts in CO(2) separations by solvent absorption, chemical and physical adsorption, and membranes, amongst others, will be discussed, with particular attention on progress in the burgeoning field of metal-organic frameworks.

3,388 citations

Journal ArticleDOI
TL;DR: A forum to review, analyze and stimulate the development, testing and implementation of mitigation and adaptation strategies at regional, national and global scales as mentioned in this paper, which contributes to real-time policy analysis and development as national and international policies and agreements are discussed.
Abstract: ▶ Addresses a wide range of timely environment, economic and energy topics ▶ A forum to review, analyze and stimulate the development, testing and implementation of mitigation and adaptation strategies at regional, national and global scales ▶ Contributes to real-time policy analysis and development as national and international policies and agreements are discussed and promulgated ▶ 94% of authors who answered a survey reported that they would definitely publish or probably publish in the journal again

2,587 citations

Journal ArticleDOI
TL;DR: This critical review describes the state-of-the-art development in the design, synthesis, characterisation, and application of the crystalline porous COF materials.
Abstract: Covalent organic frameworks (COFs) represent an exciting new type of porous organic materials, which are ingeniously constructed with organic building units via strong covalent bonds. The well-defined crystalline porous structures together with tailored functionalities have offered the COF materials superior potential in diverse applications, such as gas storage, adsorption, optoelectricity, and catalysis. Since the seminal work of Yaghi and co-workers in 2005, the rapid development in this research area has attracted intensive interest from researchers with diverse expertise. This critical review describes the state-of-the-art development in the design, synthesis, characterisation, and application of the crystalline porous COF materials. Our own opinions on further development of the COF materials are also presented for discussion (155 references).

2,572 citations

Journal ArticleDOI
30 Jun 2016-Nature
TL;DR: Substantial enhancement or over-delivery on current INDCs by additional national, sub-national and non-state actions is required to maintain a reasonable chance of meeting the target of keeping warming well below 2 degrees Celsius.
Abstract: The Paris climate agreement aims at holding global warming to well below 2 degrees Celsius and to "pursue efforts" to limit it to 1.5 degrees Celsius. To accomplish this, countries have submitted Intended Nationally Determined Contributions (INDCs) outlining their post-2020 climate action. Here we assess the effect of current INDCs on reducing aggregate greenhouse gas emissions, its implications for achieving the temperature objective of the Paris climate agreement, and potential options for overachievement. The INDCs collectively lower greenhouse gas emissions compared to where current policies stand, but still imply a median warming of 2.6-3.1 degrees Celsius by 2100. More can be achieved, because the agreement stipulates that targets for reducing greenhouse gas emissions are strengthened over time, both in ambition and scope. Substantial enhancement or over-delivery on current INDCs by additional national, sub-national and non-state actions is required to maintain a reasonable chance of meeting the target of keeping warming well below 2 degrees Celsius.

2,333 citations