scispace - formally typeset
Search or ask a question
Author

R. Sundaravadivelu

Other affiliations: Indian Institutes of Technology
Bio: R. Sundaravadivelu is an academic researcher from Indian Institute of Technology Madras. The author has contributed to research in topics: Spar & Breakwater. The author has an hindex of 12, co-authored 37 publications receiving 535 citations. Previous affiliations of R. Sundaravadivelu include Indian Institutes of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a two-dimensional finite element model is adopted to study the behavior of pontoon-type floating breakwaters in beam waves, and the stiffness coefficients of the slack mooring lines are idealized as the linear stiffness coefficients, which can be derived from the basic catenary equations of the cable.

150 citations

Journal ArticleDOI
TL;DR: In this article, the effect of slope angle and relative density on bending moment, lateral soil resistance, lateral deflection and non-dimensional p-y curves for piles on sloping ground under surcharge load are developed modifying API RP 2A (2000) method by including a Reduction Factor (R) using the experimental results.

60 citations

Journal ArticleDOI
TL;DR: In this article, the hydrodynamic behavior of multiple floating structures under a multi-directional wave field was studied using the finite element method and the effect of mean wave direction and directional homogeneity on the hydrogrodynamic behaviour of the structure was studied.

49 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of increase in the size of rectangular opening along the loading direction on the ultimate strength is determined using nonlinear finite element analysis using a general purpose finite element software ANSYS.
Abstract: Unstiffened plates are integral part of ship structures, offshore oil platforms, lock gates and floating docks. Openings are provided in these plates for access and maintenance. Provision of opening influences the ultimate strength of plate elements. In this paper the effect of increase in the size of rectangular opening along the loading direction on the ultimate strength is determined using nonlinear finite element analysis. A general purpose finite element software ANSYS is used for carrying out the study. The software is validated for the ultimate strength of unstiffened plate under axial compression. A parametric study is done for different plate slenderness ratios and by varying the area ratio of opening to plate to determine the effect of ultimate strength on the size of rectangular opening. It is found that increase in area ratio along the loading direction decreases the ultimate strength. The variation in ultimate strength varies linearly for plate slenderness ratio less than 2.23 and varies nonlinearly for plate slenderness ratio beyond 2.23 for area ratio ranging between 0.02 - 0.18. Based on nonlinear regression analysis, a design equation is proposed for square plate with rectangular opening under axial compression. Keywords: Unstiffened Plate, Ultimate Strength, Rectangular Opening, Axial Compression, Design Equation DOI: 10.3329/jname.v4i1.913 Journal of Naval Architecture and Marine Engineering 4(2007) 15-26

40 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of heave plate on heave damping of spar with single and two heave plates for supporting the offshore wind turbine were investigated using a 1:50 scale model.

37 citations


Cited by
More filters
Book
21 Aug 2006
TL;DR: The mathematical theory and technology needed to understand the multiple scattering phenomenon is known as multiple scattering, and this book is the first devoted to the subject as mentioned in this paper, and the author covers a variety of techniques, describing first the single-obstacle methods and then extending them to the multiple-obsstacle case.
Abstract: The interaction of waves with obstacles is an everyday phenomenon in science and engineering, arising for example in acoustics, electromagnetism, seismology and hydrodynamics. The mathematical theory and technology needed to understand the phenomenon is known as multiple scattering, and this book is the first devoted to the subject. The author covers a variety of techniques, describing first the single-obstacle methods and then extending them to the multiple-obstacle case. A key ingredient in many of these extensions is an appropriate addition theorem: a coherent, thorough exposition of these theorems is given, and computational and numerical issues around them are explored. The application of these methods to different types of problems is also explained; in particular, sound waves, electromagnetic radiation, waves in solids and water waves. A comprehensive bibliography of some 1400 items rounds off the book, which will be an essential reference on the topic for applied mathematicians, physicists and engineers.

355 citations

Journal ArticleDOI
TL;DR: Martin this paper reviewed multiple scattering, Interaction of Time-Harmonic Waves with N Obstacles by P. A. Martin. 450 pp. Price: $140.00 (hardcover). ISBN: 0-521-86554-9
Abstract: This article reviews Multiple Scattering, Interaction of Time-Harmonic Waves with N Obstacles by P. A. Martin , 2006. 450 pp. Price: $140.00 (hardcover). ISBN: 0-521-86554-9

238 citations

Journal ArticleDOI
TL;DR: In this article, the use of single and multiple tuned mass dampers (TMDs) for passive control of edgewise vibrations of nacelle/tower and spar of spar-type floating wind turbines (S-FOWTs) is investigated.
Abstract: SUMMARY This paper investigates the use of single and multiple tuned mass dampers (TMDs) for passive control of edgewise vibrations of nacelle/tower and spar of spar-type floating wind turbines (S-FOWTs). Uncontrolled and controlled mathematical models of the S-FOWT are developed by using Euler-Lagrangian energy formulations. In these models, the aerodynamic properties of the blade, variable mass and stiffness, gravity, the interactions among the blades, nacelle, spar and mooring system, the hydrodynamic effects, the restoring moment, and the buoyancy force are considered. The vibrations of the blades, nacelle, tower, and spar are coupled in all degrees of freedom and in all inertial, dissipative, and elastic components. In the controlled model, several set of horizontal TMDs are placed in the spar at various depths and the coupling of these TMDs with the nacelle and spar motions is considered. The control effectiveness is evaluated by the reduction of the root-mean-square and maximum response. The control feasibility is examined by using the spar sinking and the TMD maximum strokes. The investigations using nonlinear time–domain simulation show that a single TMD can reduce up to 40% of the nacelle sway displacement and the spar roll, and that the reduction observed with multiple TMDs is 50%. The influence of the spar TMD is more significant than that of the nacelle TMD. The spar TMDs are less effective when their positions are lower. In all the cases studied, good heave performance of the S-FOWT is maintained. Copyright © 2014 John Wiley & Sons, Ltd.

132 citations

Journal ArticleDOI
TL;DR: In this article, three-dimensional finite element analyses were performed to study the behavior of piles in sloping ground under undrained lateral loading conditions, and analytical formulations were derived for the ultimate load per unit length and the initial stiffness of hyperbolic p-y curves.
Abstract: Three-dimensional finite element analyses were performed to study the behavior of piles in sloping ground under undrained lateral loading conditions. Piles of different diameter and length in sloping cohesive soils of different undrained shear strength and several ground slopes were considered. Based on the results of the finite element analyses, analytical formulations are derived for the ultimate load per unit length and the initial stiffness of hyperbolic p-y curves. New p-y criteria for static loading of piles in clay are proposed, which take into account the inclination of the slope and the adhesion of the pile-slope interface. These curves are used through a commercial subgrade reaction computer code to parametrically analyze the effect of slope inclination and pile adhesion on lateral displacements and bending moments. To validate the proposed p-y curves, a number of well documented lateral load tests are analyzed. Remarkable agreement is obtained between predicted and measured responses for a wide range of soil undrained shear strength and pile diameter, length, and stiffness.

120 citations

Journal ArticleDOI
TL;DR: In this article, the hydrodynamic properties of a pair of long floating pontoon breakwaters of rectangular section are investigated theoretically, where the structures are partially restrained by linear symmetric moorings fore and aft.

117 citations