scispace - formally typeset
Search or ask a question
Author

R. T. Sharp

Bio: R. T. Sharp is an academic researcher from University of Alberta. The author has contributed to research in topics: Variational method & Slater determinant. The author has an hindex of 1, co-authored 1 publications receiving 610 citations.

Papers
More filters

Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a new coupling of Hartree-Fock theory with local density functional theory was proposed to improve the predictive power of the Hartree−Fock model for molecular bonding, and the results of tests on atomization energies, ionization potentials, and proton affinities were reported.
Abstract: Previous attempts to combine Hartree–Fock theory with local density‐functional theory have been unsuccessful in applications to molecular bonding. We derive a new coupling of these two theories that maintains their simplicity and computational efficiency, and yet greatly improves their predictive power. Very encouraging results of tests on atomization energies, ionization potentials, and proton affinities are reported, and the potential for future development is discussed.

13,853 citations

Journal ArticleDOI
TL;DR: In this article, a time-dependent version of density functional theory was proposed to deal with the non-perturbative quantum mechanical description of interacting many-body systems moving in a very strong timedependent external field.
Abstract: The response of an interacting many-particle system to a time-dependent external field can usually be treated within linear response theory. Due to rapid experimental progress in the field of laser physics, however, ultra-short laser pulses of very high intensity have become available in recent years. The electric field produced in such pulses can reach the strength of the electric field caused by atomic nuclei. If an atomic system is placed in the focus of such a laser pulse one observes a wealth of new phenomena [1] which cannot be explained by traditional perturbation theory. The non-perturbative quantum mechanical description of interacting particles moving in a very strong time-dependent external field therefore has become a prominent problem of theoretical physics. In principle, it requires a full solution of the time-dependent Schrodinger equation for the interacting many-body system, which is an exceedingly difficult task. In view of the success of density functional methods in the treatment of stationary many-body systems and in view of their numerical simplicity, a time-dependent version of density functional theory appears highly desirable, both within and beyond the regime of linear response.

6,874 citations

Book
01 Jan 2004
TL;DR: In this paper, the Kohn-Sham ansatz is used to solve the problem of determining the electronic structure of atoms, and the three basic methods for determining electronic structure are presented.
Abstract: Preface Acknowledgements Notation Part I. Overview and Background Topics: 1. Introduction 2. Overview 3. Theoretical background 4. Periodic solids and electron bands 5. Uniform electron gas and simple metals Part II. Density Functional Theory: 6. Density functional theory: foundations 7. The Kohn-Sham ansatz 8. Functionals for exchange and correlation 9. Solving the Kohn-Sham equations Part III. Important Preliminaries on Atoms: 10. Electronic structure of atoms 11. Pseudopotentials Part IV. Determination of Electronic Structure, The Three Basic Methods: 12. Plane waves and grids: basics 13. Plane waves and grids: full calculations 14. Localized orbitals: tight binding 15. Localized orbitals: full calculations 16. Augmented functions: APW, KKR, MTO 17. Augmented functions: linear methods Part V. Predicting Properties of Matter from Electronic Structure - Recent Developments: 18. Quantum molecular dynamics (QMD) 19. Response functions: photons, magnons ... 20. Excitation spectra and optical properties 21. Wannier functions 22. Polarization, localization and Berry's phases 23. Locality and linear scaling O (N) methods 24. Where to find more Appendixes References Index.

2,690 citations

Journal ArticleDOI
TL;DR: This perspective reviews some recent progress and ongoing challenges in density functional theory.
Abstract: Density functional theory (DFT) is an incredible success story. The low computational cost, combined with useful (but not yet chemical) accuracy, has made DFT a standard technique in most branches of chemistry and materials science. Electronic structure problems in a dazzling variety of fields are currently being tackled. However, DFT has many limitations in its present form: too many approximations, failures for strongly correlated systems, too slow for liquids, etc. This perspective reviews some recent progress and ongoing challenges.

1,303 citations