scispace - formally typeset
Search or ask a question
Author

R. Usha

Bio: R. Usha is an academic researcher from Indian Institute of Technology Madras. The author has contributed to research in topics: Reynolds number & Instability. The author has an hindex of 17, co-authored 85 publications receiving 1061 citations. Previous affiliations of R. Usha include University of Hyderabad & Anna University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a linear stability analysis of a gravity-driven two-fluid flow with matched density and different viscosities, containing a thin mixed layer between the two fluids, down a slippery inclined plane is considered.

1 citations

Journal ArticleDOI
TL;DR: In this paper , the authors explored the possibility of employing RBF-based schemes to determine the solution of thin film flows involving interface/free surface through depth-averaged momentum integral model.

1 citations

Journal ArticleDOI
TL;DR: In this paper, non-linear waves on the surface of a falling film of power-law fluid on a vertical porous plane are investigated and the waves are described by evolution equations generalising equations previously derived in the case of solid plane.
Abstract: Non-linear waves on the surface of a falling film of power-law fluid on a vertical porous plane are investigated. The waves are described by evolution equations generalising equations previously derived in the case of solid plane. It is shown that the slip condition on the interface between pure liquid and the porous substrate drastically changes structure of the steady waves travelling in the film.

1 citations

Proceedings ArticleDOI
01 Jan 2002
TL;DR: In this paper, the phase change effects at the interface of thin viscoelastic liquid film flowing down a vertical wall including the phase-change effects at interface has been investigated and a normal mode approach and the method of multiple scales are employed to carry out the linear stability solution and the nonlinear stability solution for the film flow system.
Abstract: Wealky nonlinear stability analysis of thin viscoelastic liquid film flowing down a vertical wall including the phase change effects at the interface has been investigated. A normal mode approach and the method of multiple scales are employed to carry out the linear stability solution and the nonlinear stability solution for the film flow system. The results show that both the supercritical stability and subcritical instability are possible for condensate, evaporating and isothermal viscoelastic film flow system. The stability characteristics of the viscoelastic film flow are strongly influenced by the phase change parameter. The condensate (Evaporating) viscoelastic film is more stable (unstable) than the isothermal viscoelastic film and the effect of viscoelasticity is to destabilize the film flowing down a vertical wall.Copyright © 2002 by ASME

1 citations

Journal ArticleDOI
TL;DR: In this article, a viscous fluid separates a rotating flat bottom disk and a non-rotating axisymmetric curved upper disk, and the curvature of the top disk strongly influences the braking characteristics.
Abstract: The hydrodynamic disk braking by an axisymmetric curved disk of arbitrary shape is investigated. A viscous fluid separates a rotating flat bottom disk and a non-rotating axisymmetric curved upper disk. As the two disks are squeezed closer together, increased viscous torque is transmitted to the rotating bottom disk. A perturbation method is used to solve the governing equations of motion for small values of the parameter which is the ratio of the gapwidth to the radius of the disk. Constant force squeezing state is considered to study the braking characteristics, when the bottom disk rotates with constant angular velocity. It is observed that the curvature of the top disk strongly influences the braking characteristics.

1 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The dynamics and stability of thin liquid films have fascinated scientists over many decades: the observations of regular wave patterns in film flows along a windowpane or along guttering, the patterning of dewetting droplets, and the fingering of viscous flows down a slope are all examples that are familiar in daily life.
Abstract: The dynamics and stability of thin liquid films have fascinated scientists over many decades: the observations of regular wave patterns in film flows down a windowpane or along guttering, the patterning of dewetting droplets, and the fingering of viscous flows down a slope are all examples that are familiar in daily life. Thin film flows occur over a wide range of length scales and are central to numerous areas of engineering, geophysics, and biophysics; these include nanofluidics and microfluidics, coating flows, intensive processing, lava flows, dynamics of continental ice sheets, tear-film rupture, and surfactant replacement therapy. These flows have attracted considerable attention in the literature, which have resulted in many significant developments in experimental, analytical, and numerical research in this area. These include advances in understanding dewetting, thermocapillary- and surfactant-driven films, falling films and films flowing over structured, compliant, and rapidly rotating substrates, and evaporating films as well as those manipulated via use of electric fields to produce nanoscale patterns. These developments are reviewed in this paper and open problems and exciting research avenues in this thriving area of fluid mechanics are also highlighted.

1,226 citations

Journal ArticleDOI
TL;DR: In this paper, the viscous flow induced by a shrinking sheet is studied and its existence and uniqueness are proved. Exact solutions, both numerical and in closed form, are found.
Abstract: The viscous flow induced by a shrinking sheet is studied. Existence and (non)uniqueness are proved. Exact solutions, both numerical and in closed form, are found.

589 citations

01 Jan 2016
TL;DR: The principles of enhanced heat transfer is universally compatible with any devices to read and is available in the book collection an online access to it is set as public so you can get it instantly.
Abstract: Thank you very much for reading principles of enhanced heat transfer. As you may know, people have look numerous times for their chosen books like this principles of enhanced heat transfer, but end up in malicious downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they are facing with some infectious bugs inside their desktop computer. principles of enhanced heat transfer is available in our book collection an online access to it is set as public so you can get it instantly. Our books collection spans in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the principles of enhanced heat transfer is universally compatible with any devices to read.

553 citations

01 Jan 1985

384 citations