scispace - formally typeset
Search or ask a question
Author

R. Usha

Bio: R. Usha is an academic researcher from Indian Institute of Technology Madras. The author has contributed to research in topics: Reynolds number & Instability. The author has an hindex of 17, co-authored 85 publications receiving 1061 citations. Previous affiliations of R. Usha include University of Hyderabad & Anna University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the stability analysis of a thin layer of viscoelastic fluid flowing down a non-uniformly heated inclined plane is considered based on the assumption of constant temperature gradient (positive or negative) along the plane.

29 citations

Journal ArticleDOI
TL;DR: In this article, the effects of shear-thinning rheology and bottom permeability of the substrate on the stability of the film flow system are investigated, and the problem is solved analytically for long waves in the limiting cases of weakly and strongly non-Newtonian behaviors.

27 citations

Journal ArticleDOI
TL;DR: In this paper, a theory describing the nonlinear stationary waves of finite amplitude and long wavelength on a thin viscous Newtonian film at high Reynolds numbers and moderate Weber numbers has been developed using the energy integral method (EIM).
Abstract: The theory describing the nonlinear stationary waves of finite amplitude and long wavelength on a thin viscous Newtonian film at high Reynolds numbers and moderate Weber numbers has been developed using the energy integral method (EIM). The linear instability of the uniform flow by EIM has been analyzed and the linear instability threshold has been obtained as cot θ/Re=6/5, which agrees with the classical results of the Orr–Sommerfeld analysis by Benjamin [J. Fluid Mech. 2, 554 (1957)] and Yih [Phys. Fluids 6, 321 (1963)] and verified experimentally by Liu and Gollub [Phys. Rev. Lett. 70, 2289 (1993)]. Further, in the frame of reference moving with the steady wave speed, the second order approximate equations reduce to a third order dynamical system. While wave transitions in real life involve complex spatio-temporal dynamics and many of these transitions lead to chaotic waves that are not stationary traveling waves, bifurcation of stationary traveling waves has been examined as a preliminary study of the more complex transitions. Stability of the fixed points of the dynamical system, parametric regimes of heteroclinic orbits and Hopf bifurcations are delineated. Numerical integration has been carried out in order to study the different bifurcation scenarios as the phase speed deviates from the Hopf-bifurcation thresholds. Four different bifurcation scenarios have been observed and the dependence of bifurcation scenarios on the inclination angle, Reynolds numbers and Weber numbers have been discussed. Although the results obtained by the momentum integral method and EIM exhibit similar bifurcation scenarios, there are quantitative differences which shows that the modeling differences exist in the literature.

26 citations

Journal ArticleDOI
TL;DR: In this article, the effect of velocity slip at the walls on the linear stability characteristics of two-fluid three-layer channel flow was investigated in the presence of double diffusive (DD) phenomenon.
Abstract: The effect of velocity slip at the walls on the linear stability characteristics of two-fluid three-layer channel flow (the equivalent core-annular configuration in case of pipe) is investigated in the presence of double diffusive (DD) phenomenon. The fluids are miscible and consist of two solute species having different rates of diffusion. The fluids are assumed to be of the same density, but varying viscosity, which depends on the concentration of the solute species. It is found that the flow stabilizes when the less viscous fluid is present in the region adjacent to the slippery channel walls in the single-component (SC) system but becomes unstable at low Reynolds numbers in the presence of DD effect. As the mixed region of the fluids moves towards the channel walls, a new unstable mode (DD mode), distinct from the Tollman Schlichting (TS) mode, arises at Reynolds numbers smaller than the critical Reynolds number for the TS mode. We also found that this mode becomes more prominent when the mixed layer overlaps with the critical layer. It is shown that the slip parameter has nonmonotonic effect on the stability characteristics in this system. Through energy budget analysis, the dual role of slip is explained. The effect of slip is influenced by the location of mixed layer, the log-mobility ratio of the faster diffusing scalar, diffusivity, and the ratio of diffusion coefficients of the two species. Increasing the value of the slip parameter delays the first occurrence of the DD-mode. It is possible to achieve stabilization or destabilization by controlling the various physical parameters in the flow system. In the present study, we suggest an effective and realistic way to control three-layer miscible channel flow with viscosity stratification.

24 citations

Journal ArticleDOI
TL;DR: In this paper, the linear stability of viscosity-stratified core-annular Poiseuille flow with slip at the wall was investigated in the presence of two scalars diffusing at different rates.
Abstract: This study is motivated by the preliminary direct numerical simulations in double-diffusive (DD) core-annular flows with slip at the wall which displayed elliptical shaped instability patterns as in a rigid pipe case; however, slip at the pipe wall delays the onset of instability for a range of parameters and increases the phase speed. This increased our curiosity to have a thorough understanding of the linear stability characteristics of the miscible DD two-fluid flow in a pipe with slip at the pipe wall. The present study, therefore, addresses the linear stability of viscosity-stratified core-annular Poiseuille flow of miscible fluids with matched density in a slippery pipe in the presence of two scalars diffusing at different rates. The physical mechanisms responsible for the occurrence of instabilities in the DD system are explained through an energy budget analysis. The differences and similarities between core-annular flow in a slippery pipe and in a plane channel with velocity slip at the walls are explored. The stability characteristics are significantly affected by the presence of slip. The diffusivity effect is non-monotonic in a DD system. A striking feature of instability is that only a band of wavenumbers is destabilized in the presence of moderate to large inertial effects. Both the longwave and shortwave are stabilized at small Reynolds numbers. Slip exhibits a dual role of stabilizing or destabilizing the flow. The preliminary direct numerical simulations confirm the predictions of the linear stability analysis. The present study reveals that it may be possible to control the instabilities in core-annular pressure driven pipe flows by imposing a velocity slip at the walls.

22 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The dynamics and stability of thin liquid films have fascinated scientists over many decades: the observations of regular wave patterns in film flows along a windowpane or along guttering, the patterning of dewetting droplets, and the fingering of viscous flows down a slope are all examples that are familiar in daily life.
Abstract: The dynamics and stability of thin liquid films have fascinated scientists over many decades: the observations of regular wave patterns in film flows down a windowpane or along guttering, the patterning of dewetting droplets, and the fingering of viscous flows down a slope are all examples that are familiar in daily life. Thin film flows occur over a wide range of length scales and are central to numerous areas of engineering, geophysics, and biophysics; these include nanofluidics and microfluidics, coating flows, intensive processing, lava flows, dynamics of continental ice sheets, tear-film rupture, and surfactant replacement therapy. These flows have attracted considerable attention in the literature, which have resulted in many significant developments in experimental, analytical, and numerical research in this area. These include advances in understanding dewetting, thermocapillary- and surfactant-driven films, falling films and films flowing over structured, compliant, and rapidly rotating substrates, and evaporating films as well as those manipulated via use of electric fields to produce nanoscale patterns. These developments are reviewed in this paper and open problems and exciting research avenues in this thriving area of fluid mechanics are also highlighted.

1,226 citations

Journal ArticleDOI
TL;DR: In this paper, the viscous flow induced by a shrinking sheet is studied and its existence and uniqueness are proved. Exact solutions, both numerical and in closed form, are found.
Abstract: The viscous flow induced by a shrinking sheet is studied. Existence and (non)uniqueness are proved. Exact solutions, both numerical and in closed form, are found.

589 citations

01 Jan 2016
TL;DR: The principles of enhanced heat transfer is universally compatible with any devices to read and is available in the book collection an online access to it is set as public so you can get it instantly.
Abstract: Thank you very much for reading principles of enhanced heat transfer. As you may know, people have look numerous times for their chosen books like this principles of enhanced heat transfer, but end up in malicious downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they are facing with some infectious bugs inside their desktop computer. principles of enhanced heat transfer is available in our book collection an online access to it is set as public so you can get it instantly. Our books collection spans in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the principles of enhanced heat transfer is universally compatible with any devices to read.

553 citations

01 Jan 1985

384 citations