scispace - formally typeset
Search or ask a question
Author

R. Usha

Bio: R. Usha is an academic researcher from Indian Institute of Technology Madras. The author has contributed to research in topics: Reynolds number & Instability. The author has an hindex of 17, co-authored 85 publications receiving 1061 citations. Previous affiliations of R. Usha include University of Hyderabad & Anna University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the phase change effects at the interface of thin viscoelastic liquid film flowing down a vertical wall including the phase-change effects at interface has been investigated and a normal mode approach and the method of multiple scales are employed to carry out the linear stability solution and the nonlinear stability solution for the film flow system.

17 citations

Journal ArticleDOI
TL;DR: In this article, an analysis for the laminar squeeze flow of an incompressible powerlaw fluid between parallel plane annuli using the modified lubrication theory and energy integral method is presented.
Abstract: An analysis is presented for the laminar squeeze flow of an incompressible powerlaw fluid between parallel plane annuli using the modified lubrication theory and energy integral method. The local and the convective inertia of the flow are considered in the investigation. Analytical expressions for the load carrying capacity of the squeeze film are obtained using, both the methods and are compared with those based on the assumption of inertialess flow. It is observed that the inertia correction in the load carrying capacity is more significant for pseudo-plastic fluids, n < 1.

17 citations

Journal ArticleDOI
TL;DR: In this article, a thin film of a power-law fluid flowing down a porous inclined plane is considered and a nonlinear evolution equation for the thickness of the film is obtained.
Abstract: A thin film of a power–law fluid flowing down a porous inclined plane is considered. It is assumed that the flow through the porous medium is governed by the modified Darcy’s law together with Beavers–Joseph boundary condition for a general power–law fluid. Under the assumption of small permeability relative to the thickness of the overlying fluid layer, the flow is decoupled from the filtration flow through the porous medium and a slip condition at the bottom is used to incorporate the effects of the permeability of the porous substrate. Applying the long-wave theory, a nonlinear evolution equation for the thickness of the film is obtained. A linear stability analysis of the base flow is performed and the critical condition for the onset of instability is obtained. The results show that the substrate porosity in general destabilizes the film flow system and the shear-thinning rheology enhances this destabilizing effect. A weakly nonlinear stability analysis reveals the existence of supercritical stable and subcritical unstable regions in the wave number versus Reynolds number parameter space. The numerical solution of the nonlinear evolution equation in a periodic domain shows that the fully developed nonlinear solutions are either time-dependent modes that oscillate slightly in the amplitude or time independent stable two-dimensional nonlinear waves with large amplitude referred to as ‘permanent waves’. The results show that the shape and the amplitude of the nonlinear waves are strongly influenced by the permeability of the porous medium and the shear-thinning rheology.

17 citations

Journal ArticleDOI
TL;DR: In this article, the authors show that miscible two-layer free-surface flows of varying viscosity down an inclined substrate are different in their stability characteristics from both immiscible 2-layer flows, and flows with viscous wall layers spanning the entire flow.
Abstract: We show that miscible two-layer free-surface flows of varying viscosity down an inclined substrate are different in their stability characteristics from both immiscible two-layer flows, and flows with viscosity gradients spanning the entire flow. New instability modes arise when the critical layer of the viscosity transport equation overlaps the viscosity gradient. A lubricating configuration with a less viscous wall layer is identified to be the most stabilizing at moderate miscibility (moderate Peclet numbers). This also is in contrast with the immiscible case, where the lubrication configuration is always destabilizing. The co-existence that we find under certain circumstances, of several growing overlap modes, the usual surface mode, and a Tollmien-Schlichting mode, presents interesting new possibilities for nonlinear breakdown.

16 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the long wave deformation on a viscoelastic film flow down a wavy inclined plane, and compared the results with those corresponding to Newtonian film down a Wavy inclined wall as well as VCL down a plane inclined wall.
Abstract: Long waves on a viscoelastic film flow down a wavy inclined plane is investigated. The analysis is performed to see how long non-linear waves on viscoelastic film down an uneven inclined wall are deformed due to the non-uniformity of the basic flow. The results are then compared with those corresponding to Newtonian film down a wavy inclined wall as well as viscoelastic film down a plane inclined wall.

15 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The dynamics and stability of thin liquid films have fascinated scientists over many decades: the observations of regular wave patterns in film flows along a windowpane or along guttering, the patterning of dewetting droplets, and the fingering of viscous flows down a slope are all examples that are familiar in daily life.
Abstract: The dynamics and stability of thin liquid films have fascinated scientists over many decades: the observations of regular wave patterns in film flows down a windowpane or along guttering, the patterning of dewetting droplets, and the fingering of viscous flows down a slope are all examples that are familiar in daily life. Thin film flows occur over a wide range of length scales and are central to numerous areas of engineering, geophysics, and biophysics; these include nanofluidics and microfluidics, coating flows, intensive processing, lava flows, dynamics of continental ice sheets, tear-film rupture, and surfactant replacement therapy. These flows have attracted considerable attention in the literature, which have resulted in many significant developments in experimental, analytical, and numerical research in this area. These include advances in understanding dewetting, thermocapillary- and surfactant-driven films, falling films and films flowing over structured, compliant, and rapidly rotating substrates, and evaporating films as well as those manipulated via use of electric fields to produce nanoscale patterns. These developments are reviewed in this paper and open problems and exciting research avenues in this thriving area of fluid mechanics are also highlighted.

1,226 citations

Journal ArticleDOI
TL;DR: In this paper, the viscous flow induced by a shrinking sheet is studied and its existence and uniqueness are proved. Exact solutions, both numerical and in closed form, are found.
Abstract: The viscous flow induced by a shrinking sheet is studied. Existence and (non)uniqueness are proved. Exact solutions, both numerical and in closed form, are found.

589 citations

01 Jan 2016
TL;DR: The principles of enhanced heat transfer is universally compatible with any devices to read and is available in the book collection an online access to it is set as public so you can get it instantly.
Abstract: Thank you very much for reading principles of enhanced heat transfer. As you may know, people have look numerous times for their chosen books like this principles of enhanced heat transfer, but end up in malicious downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they are facing with some infectious bugs inside their desktop computer. principles of enhanced heat transfer is available in our book collection an online access to it is set as public so you can get it instantly. Our books collection spans in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the principles of enhanced heat transfer is universally compatible with any devices to read.

553 citations

01 Jan 1985

384 citations