scispace - formally typeset
Search or ask a question
Author

R. Vijay

Bio: R. Vijay is an academic researcher from Tata Institute of Fundamental Research. The author has contributed to research in topics: Qubit & Josephson effect. The author has an hindex of 31, co-authored 66 publications receiving 4651 citations. Previous affiliations of R. Vijay include Yale University & University of California, Berkeley.


Papers
More filters
Journal ArticleDOI
06 May 2010-Nature
TL;DR: This work experimentally realizes a proposal for an intrinsically phase-preserving, superconducting parametric amplifier of non-degenerate type based on a Josephson ring modulator, which greatly enhances the purity of the amplification process and simplifies both its operation and its analysis.
Abstract: The processing of the single-quantum-level signals produced by current nanoscale solid-state devices such as qubits and nanomechanical resonators would require the development of very sensitive active circuits, such as amplifiers or frequency up- and down-converters that could attain the ultimate performances limited by the laws of quantum mechanics, while remaining of practical use. Bergeal et al. now demonstrate a phase-preserving, superconducting parametric amplifier with ultra-low noise properties, following theoretical principles recently presented in Nature Physics ( http://go.nature.com/F7lwR2 ). Based on a Josephson ring modulator, the new device can operate within a factor of three of the quantum limit. Possible applications include quantum analog signal processing such as the production of entangled microwave signal pairs. Recent progress in solid-state quantum information processing has stimulated the search for amplifiers and frequency converters with quantum-limited performance in the microwave range. Here, a phase-preserving, superconducting parametric amplifier with ultra-low-noise properties has been experimentally realized. Recent progress in solid-state quantum information processing1 has stimulated the search for amplifiers and frequency converters with quantum-limited performance in the microwave range. Depending on the gain applied to the quadratures of a single spatial and temporal mode of the electromagnetic field, linear amplifiers can be classified into two categories (phase sensitive and phase preserving) with fundamentally different noise properties2. Phase-sensitive amplifiers use squeezing to reduce the quantum noise, but are useful only in cases in which a reference phase is attached to the signal, such as in homodyne detection. A phase-preserving amplifier would be preferable in many applications, but such devices have not been available until now. Here we experimentally realize a proposal3 for an intrinsically phase-preserving, superconducting parametric amplifier of non-degenerate type. It is based on a Josephson ring modulator, which consists of four Josephson junctions in a Wheatstone bridge configuration. The device symmetry greatly enhances the purity of the amplification process and simplifies both its operation and its analysis. The measured characteristics of the amplifier in terms of gain and bandwidth are in good agreement with analytical predictions. Using a newly developed noise source, we show that the upper bound on the total system noise of our device under real operating conditions is three times the quantum limit. We foresee applications in the area of quantum analog signal processing, such as quantum non-demolition single-shot readout of qubits4, quantum feedback5 and the production of entangled microwave signal pairs6.

506 citations

Journal ArticleDOI
04 Oct 2012-Nature
TL;DR: In this paper, a superconducting quantum bit (qubit) coupled to a microwave cavity is used to stabilize the oscillation phase of a driven quantum bit, which can be used to continuously track and steer the quantum state using feedback.
Abstract: Real-time quantum feedback based on weak measurement of the quantum state is used to stabilize the oscillation phase of a driven quantum bit. By performing weak measurements of a quantum state, it is possible to slow the rate of collapse of its wavefunction, so that information about the quantum state can be gradually acquired. Such information can be used to continuously track and steer the quantum state using feedback. This paper reports quantum feedback control of a superconducting quantum bit (qubit) coupled to a microwave cavity. The qubit undergoes coherent oscillations that can be made to speed up, slow down or persist indefinitely. This ability to actively suppress decoherence could find many applications in quantum error correction, quantum-state stabilization and purification, entanglement generation and adaptive measurements. The act of measurement bridges the quantum and classical worlds by projecting a superposition of possible states into a single (probabilistic) outcome. The timescale of this ‘instantaneous’ process can be stretched using weak measurements1,2, such that it takes the form of a gradual random walk towards a final state. Remarkably, the interim measurement record is sufficient to continuously track and steer the quantum state using feedback3,4,5,6,7,8. Here we implement quantum feedback control in a solid-state system, namely a superconducting quantum bit (qubit) coupled to a microwave cavity9. A weak measurement of the qubit is implemented by probing the cavity with microwave photons, maintaining its average occupation at less than one photon. These photons are then directed to a high-bandwidth, quantum-noise-limited amplifier10,11, which allows real-time monitoring of the state of the cavity (and, hence, that of the qubit) with high fidelity. We demonstrate quantum feedback control by inhibiting the decay of Rabi oscillations, allowing them to persist indefinitely12. Such an ability permits the active suppression of decoherence and enables a method of quantum error correction based on weak continuous measurements13,14. Other applications include quantum state stabilization4,7,15, entanglement generation using measurement16, state purification17 and adaptive measurements18,19.

418 citations

Journal ArticleDOI
TL;DR: This work continuously measure the state of a superconducting quantum bit coupled to a microwave readout cavity by using a fast, ultralow-noise parametric amplifier to enable quantum error correction and feedback--essential components of quantum information processing.
Abstract: We continuously measure the state of a superconducting quantum bit coupled to a microwave readout cavity by using a fast, ultralow-noise parametric amplifier. This arrangement allows us to observe quantum jumps between the qubit states in real time, and should enable quantum error correction and feedback--essential components of quantum information processing.

380 citations

Journal ArticleDOI
TL;DR: Pulsed microwave reflection measurements on nanofabricated Al junctions show that actual devices attain the performance predicted by theory, and the absence of on-chip dissipation is shown.
Abstract: We have constructed a new type of amplifier whose primary purpose is the readout of superconducting quantum bits. It is based on the transition of a rf-driven Josephson junction between two distinct oscillation states near a dynamical bifurcation point. The main advantages of this new amplifier are speed, high sensitivity, low backaction, and the absence of on-chip dissipation. Pulsed microwave reflection measurements on nanofabricated Al junctions show that actual devices attain the performance predicted by theory.

328 citations

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate a dispersive magnetometer consisting of a two-junction superconducting quantum interference device (SQUID) in parallel with an integrated, lumped-element capacitor.
Abstract: There is currently fundamental and technological interest in measuring and manipulating nanoscale magnets, particularly in the quantum coherent regime. To observe the dynamics of such systems one requires a magnetometer with not only exceptional sensitivity but also high gain, wide bandwidth, and low backaction. We demonstrate a dispersive magnetometer consisting of a two-junction superconducting quantum interference device (SQUID) in parallel with an integrated, lumped-element capacitor. Input flux signals are encoded as a phase modulation of the microwave drive tone applied to the magnetometer, resulting in a single quadrature voltage signal. For strong drive power, the nonlinearity of the resonator results in quantum limited, phase sensitive parametric amplification of this signal, which improves flux sensitivity at the expense of bandwidth. Depending on the drive parameters, the device performance ranges from an effective flux noise of 0.29 $\ensuremath{\mu}{\ensuremath{\Phi}}_{0}$Hz${}^{\ensuremath{-}1/2}$ and 20 MHz of signal bandwidth to a noise of 0.14 $\ensuremath{\mu}{\ensuremath{\Phi}}_{0}$Hz${}^{\ensuremath{-}1/2}$ and a bandwidth of 0.6 MHz. These results are in excellent agreement with our theoretical model.

313 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: In this paper, an updated version of supplementary information to accompany "Quantum supremacy using a programmable superconducting processor", an article published in the October 24, 2019 issue of Nature, is presented.
Abstract: This is an updated version of supplementary information to accompany "Quantum supremacy using a programmable superconducting processor", an article published in the October 24, 2019 issue of Nature. The main article is freely available at this https URL. Summary of changes since arXiv:1910.11333v1 (submitted 23 Oct 2019): added URL for qFlex source code; added Erratum section; added Figure S41 comparing statistical and total uncertainty for log and linear XEB; new References [1,65]; miscellaneous updates for clarity and style consistency; miscellaneous typographical and formatting corrections.

4,873 citations

Journal ArticleDOI
14 Sep 2017-Nature
TL;DR: The experimental optimization of Hamiltonian problems with up to six qubits and more than one hundred Pauli terms is demonstrated, determining the ground-state energy for molecules of increasing size, up to BeH2.
Abstract: The ground-state energy of small molecules is determined efficiently using six qubits of a superconducting quantum processor. Quantum simulation is currently the most promising application of quantum computers. However, only a few quantum simulations of very small systems have been performed experimentally. Here, researchers from IBM present quantum simulations of larger systems using a variational quantum eigenvalue solver (or eigensolver), a previously suggested method for quantum optimization. They perform quantum chemical calculations of LiH and BeH2 and an energy minimization procedure on a four-qubit Heisenberg model. Their application of the variational quantum eigensolver is hardware-efficient, which means that it is optimized on the given architecture. Noise is a big problem in this implementation, but quantum error correction could eventually help this experimental set-up to yield a quantum simulation of chemically interesting systems on a quantum computer. Quantum computers can be used to address electronic-structure problems and problems in materials science and condensed matter physics that can be formulated as interacting fermionic problems, problems which stretch the limits of existing high-performance computers1. Finding exact solutions to such problems numerically has a computational cost that scales exponentially with the size of the system, and Monte Carlo methods are unsuitable owing to the fermionic sign problem. These limitations of classical computational methods have made solving even few-atom electronic-structure problems interesting for implementation using medium-sized quantum computers. Yet experimental implementations have so far been restricted to molecules involving only hydrogen and helium2,3,4,5,6,7,8. Here we demonstrate the experimental optimization of Hamiltonian problems with up to six qubits and more than one hundred Pauli terms, determining the ground-state energy for molecules of increasing size, up to BeH2. We achieve this result by using a variational quantum eigenvalue solver (eigensolver) with efficiently prepared trial states that are tailored specifically to the interactions that are available in our quantum processor, combined with a compact encoding of fermionic Hamiltonians9 and a robust stochastic optimization routine10. We demonstrate the flexibility of our approach by applying it to a problem of quantum magnetism, an antiferromagnetic Heisenberg model in an external magnetic field. In all cases, we find agreement between our experiments and numerical simulations using a model of the device with noise. Our results help to elucidate the requirements for scaling the method to larger systems and for bridging the gap between key problems in high-performance computing and their implementation on quantum hardware.

2,348 citations

Journal ArticleDOI
08 Mar 2013-Science
TL;DR: For the first time, physicists will have to master quantum error correction to design and operate complex active systems that are dissipative in nature, yet remain coherent indefinitely.
Abstract: The performance of superconducting qubits has improved by several orders of magnitude in the past decade. These circuits benefit from the robustness of superconductivity and the Josephson effect, and at present they have not encountered any hard physical limits. However, building an error-corrected information processor with many such qubits will require solving specific architecture problems that constitute a new field of research. For the first time, physicists will have to master quantum error correction to design and operate complex active systems that are dissipative in nature, yet remain coherent indefinitely. We offer a view on some directions for the field and speculate on its future.

2,013 citations

Journal ArticleDOI
Abstract: "Quantum sensing" describes the use of a quantum system, quantum properties or quantum phenomena to perform a measurement of a physical quantity Historical examples of quantum sensors include magnetometers based on superconducting quantum interference devices and atomic vapors, or atomic clocks More recently, quantum sensing has become a distinct and rapidly growing branch of research within the area of quantum science and technology, with the most common platforms being spin qubits, trapped ions and flux qubits The field is expected to provide new opportunities - especially with regard to high sensitivity and precision - in applied physics and other areas of science In this review, we provide an introduction to the basic principles, methods and concepts of quantum sensing from the viewpoint of the interested experimentalist

1,878 citations