scispace - formally typeset
Search or ask a question
Author

R. W. Argyle

Bio: R. W. Argyle is an academic researcher. The author has an hindex of 1, co-authored 1 publications receiving 5517 citations.

Papers
More filters
01 Aug 2008
TL;DR: The ADS abstract service at: http://adswww.harvard.edu has been updated considerably in the last year and new capabilities in the search engine include searching for multi-word phrases and searching for various logical combinations of search terms.

5,584 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Astropy as discussed by the authors is a Python package for astronomy-related functionality, including support for domain-specific file formats such as flexible image transport system (FITS) files, Virtual Observatory (VO) tables, common ASCII table formats, unit and physical quantity conversions, physical constants specific to astronomy, celestial coordinate and time transformations, world coordinate system (WCS) support, generalized containers for representing gridded as well as tabular data, and a framework for cosmological transformations and conversions.
Abstract: We present the first public version (v02) of the open-source and community-developed Python package, Astropy This package provides core astronomy-related functionality to the community, including support for domain-specific file formats such as flexible image transport system (FITS) files, Virtual Observatory (VO) tables, and common ASCII table formats, unit and physical quantity conversions, physical constants specific to astronomy, celestial coordinate and time transformations, world coordinate system (WCS) support, generalized containers for representing gridded as well as tabular data, and a framework for cosmological transformations and conversions Significant functionality is under activedevelopment, such as a model fitting framework, VO client and server tools, and aperture and point spread function (PSF) photometry tools The core development team is actively making additions and enhancements to the current code base, and we encourage anyone interested to participate in the development of future Astropy versions

9,720 citations

Journal ArticleDOI
TL;DR: SDSS-II as mentioned in this paper is the last data set of the Sloan Digital Sky Survey and contains 357 million distinct objects, including 930,000 galaxies, 120,000 quasars, and 460,000 stars.
Abstract: This paper describes the Seventh Data Release of the Sloan Digital Sky Survey (SDSS), marking the completion of the original goals of the SDSS and the end of the phase known as SDSS-II. It includes 11663 deg^2 of imaging data, with most of the roughly 2000 deg^2 increment over the previous data release lying in regions of low Galactic latitude. The catalog contains five-band photometry for 357 million distinct objects. The survey also includes repeat photometry over 250 deg^2 along the Celestial Equator in the Southern Galactic Cap. A coaddition of these data goes roughly two magnitudes fainter than the main survey. The spectroscopy is now complete over a contiguous area of 7500 deg^2 in the Northern Galactic Cap, closing the gap that was present in previous data releases. There are over 1.6 million spectra in total, including 930,000 galaxies, 120,000 quasars, and 460,000 stars. The data release includes improved stellar photometry at low Galactic latitude. The astrometry has all been recalibrated with the second version of the USNO CCD Astrograph Catalog (UCAC-2), reducing the rms statistical errors at the bright end to 45 milli-arcseconds per coordinate. A systematic error in bright galaxy photometr is less severe than previously reported for the majority of galaxies. Finally, we describe a series of improvements to the spectroscopic reductions, including better flat-fielding and improved wavelength calibration at the blue end, better processing of objects with extremely strong narrow emission lines, and an improved determination of stellar metallicities. (Abridged)

5,119 citations

Journal ArticleDOI
Adrian M. Price-Whelan1, B. M. Sipőcz1, Hans Moritz Günther1, P. L. Lim1, Steven M. Crawford1, S. Conseil1, D. L. Shupe1, M. W. Craig1, N. Dencheva1, Adam Ginsburg1, Jacob T VanderPlas1, Larry Bradley1, David Pérez-Suárez1, M. de Val-Borro1, T. L. Aldcroft1, Kelle L. Cruz1, Thomas P. Robitaille1, E. J. Tollerud1, C. Ardelean1, Tomáš Babej1, Y. P. Bach1, Matteo Bachetti1, A. V. Bakanov1, Steven P. Bamford1, Geert Barentsen1, Pauline Barmby1, Andreas Baumbach1, Katherine Berry1, F. Biscani1, Médéric Boquien1, K. A. Bostroem1, L. G. Bouma1, G. B. Brammer1, E. M. Bray1, H. Breytenbach1, H. Buddelmeijer1, D. J. Burke1, G. Calderone1, J. L. Cano Rodríguez1, Mihai Cara1, José Vinícius de Miranda Cardoso1, S. Cheedella1, Y. Copin1, Lia Corrales1, Devin Crichton1, D. DÁvella1, Christoph Deil1, É. Depagne1, J. P. Dietrich1, Axel Donath1, M. Droettboom1, Nicholas Earl1, T. Erben1, Sebastien Fabbro1, Leonardo Ferreira1, T. Finethy1, R. T. Fox1, Lehman H. Garrison1, S. L. J. Gibbons1, Daniel A. Goldstein1, Ralf Gommers1, Johnny P. Greco1, P. Greenfield1, A. M. Groener1, Frédéric Grollier1, A. Hagen1, P. Hirst1, Derek Homeier1, Anthony Horton1, Griffin Hosseinzadeh1, L. Hu1, J. S. Hunkeler1, Ž. Ivezić1, A. Jain1, T. Jenness1, G. Kanarek1, Sarah Kendrew1, Nicholas S. Kern1, Wolfgang Kerzendorf1, A. Khvalko1, J. King1, D. Kirkby1, A. M. Kulkarni1, Ashok Kumar1, Antony Lee1, D. Lenz1, S. P. Littlefair1, Zhiyuan Ma1, D. M. Macleod1, M. Mastropietro1, C. McCully1, S. Montagnac1, Brett M. Morris1, M. Mueller1, Stuart Mumford1, D. Muna1, Nicholas A. Murphy1, Stefan Nelson1, G. H. Nguyen1, Joe Philip Ninan1, M. Nöthe1, S. Ogaz1, Seog Oh1, J. K. Parejko1, N. R. Parley1, Sergio Pascual1, R. Patil1, A. A. Patil1, A. L. Plunkett1, Jason X. Prochaska1, T. Rastogi1, V. Reddy Janga1, J. Sabater1, Parikshit Sakurikar1, Michael Seifert1, L. E. Sherbert1, H. Sherwood-Taylor1, A. Y. Shih1, J. Sick1, M. T. Silbiger1, Sudheesh Singanamalla1, Leo Singer1, P. H. Sladen1, K. A. Sooley1, S. Sornarajah1, Ole Streicher1, P. Teuben1, Scott Thomas1, Grant R. Tremblay1, J. Turner1, V. Terrón1, M. H. van Kerkwijk1, A. de la Vega1, Laura L. Watkins1, B. A. Weaver1, J. Whitmore1, Julien Woillez1, Victor Zabalza1, Astropy Contributors1 
TL;DR: The Astropy project as discussed by the authors is a Python project supporting the development of open-source and openly developed Python packages that provide commonly needed functionality to the astronomical community, including the core package astropy.
Abstract: The Astropy Project supports and fosters the development of open-source and openly developed Python packages that provide commonly needed functionality to the astronomical community. A key element of the Astropy Project is the core package astropy, which serves as the foundation for more specialized projects and packages. In this article, we provide an overview of the organization of the Astropy project and summarize key features in the core package, as of the recent major release, version 2.0. We then describe the project infrastructure designed to facilitate and support development for a broader ecosystem of interoperable packages. We conclude with a future outlook of planned new features and directions for the broader Astropy Project.

4,044 citations

Journal ArticleDOI
TL;DR: The final version published in MNRAS August 2007 included significant revisions including significant revisions to the original version April 2006.
Abstract: Final published version including significant revisions. Twenty four pages, fourteen figures. Original version April 2006; final version published in MNRAS August 2007

2,562 citations

Journal ArticleDOI
Jennifer K. Adelman-McCarthy1, Marcel A. Agüeros2, S. Allam3, S. Allam1  +170 moreInstitutions (65)
TL;DR: The Sixth Data Release of the Sloan Digital Sky Survey (SDS) as discussed by the authors contains images and parameters of roughly 287 million objects over 9583 deg(2), including scans over a large range of Galactic latitudes and longitudes.
Abstract: This paper describes the Sixth Data Release of the Sloan Digital Sky Survey. With this data release, the imaging of the northern Galactic cap is now complete. The survey contains images and parameters of roughly 287 million objects over 9583 deg(2), including scans over a large range of Galactic latitudes and longitudes. The survey also includes 1.27 million spectra of stars, galaxies, quasars, and blank sky ( for sky subtraction) selected over 7425 deg2. This release includes much more stellar spectroscopy than was available in previous data releases and also includes detailed estimates of stellar temperatures, gravities, and metallicities. The results of improved photometric calibration are now available, with uncertainties of roughly 1% in g, r, i, and z, and 2% in u, substantially better than the uncertainties in previous data releases. The spectra in this data release have improved wavelength and flux calibration, especially in the extreme blue and extreme red, leading to the qualitatively better determination of stellar types and radial velocities. The spectrophotometric fluxes are now tied to point-spread function magnitudes of stars rather than fiber magnitudes. This gives more robust results in the presence of seeing variations, but also implies a change in the spectrophotometric scale, which is now brighter by roughly 0.35 mag. Systematic errors in the velocity dispersions of galaxies have been fixed, and the results of two independent codes for determining spectral classifications and red-shifts are made available. Additional spectral outputs are made available, including calibrated spectra from individual 15 minute exposures and the sky spectrum subtracted from each exposure. We also quantify a recently recognized underestimation of the brightnesses of galaxies of large angular extent due to poor sky subtraction; the bias can exceed 0.2 mag for galaxies brighter than r = 14 mag.

1,602 citations