scispace - formally typeset
Search or ask a question
Author

R.W O'Brien

Bio: R.W O'Brien is an academic researcher from University of New South Wales. The author has contributed to research in topics: Particle & Particle size. The author has an hindex of 14, co-authored 16 publications receiving 2833 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, it was shown that for a colloidal particle of any shape the mobility is independent of the dielectric properties of the particle and the electrostatic boundary conditions on the particle surface.
Abstract: The equations which govern the ion distributions and velocities, the electrostatic potential and the hydrodynamic flow field around a solid colloidal particle in an applied electric field are reexamined. By using the linearity of the equations which determine the electrophoretic mobility, we show that for a colloidal particle of any shape the mobility is independent of the dielectric properties of the particle and the electrostatic boundary conditions on the particle surface. The mobility depends only on the particle size and shape, the properties of the electrolyte solution in which it is suspended, and the charge inside, or electrostatic potential on, the hydrodynamic shear plane in the absence of an applied field or any macroscopic motion.New expressions for the forces acting in the particle are derived and a novel substitution is developed which leads to a significant decoupling of the governing equations. These analytic developments allow for the construction of a rapid, robust numerical scheme for the solution of the governing equations which we have applied to the case of a spherical colloidal particle in a general electrolyte solution. We describe a computer program for the conversion of mobility measurements to zeta potential for a spherical colloidal particle which is far more flexible than the Wiersema graphs which have traditionally been used for the interpretation of mobility data. Furthermore it is free of the high zeta potential convergence difficulties which limited Wiersema's calculations to moderate values of ζ. Some sample computations in typical 1:1 and 2:1 electrolytes are exhibited which illustrate the existence of a maximum in the mobility at high zeta potentials. The physical explanation of this effect is given. The importance of the mobility maximum in testing the validity of the governing equations of electrophoresis and its implications for the colloid chemist's picture of the Stern layer are briefly discussed.

1,563 citations

Journal ArticleDOI
TL;DR: O'Brien et al. as discussed by the authors presented experimental verification of the theory for a latex and a cobalt phosphate sol, both of which are monodisperse, over a range of electrolyte concentrations and pH.
Abstract: From electroacoustic theory it is now possible to determine the dynamic electrophoretic mobility of colloidal particles from measurements in any suspension for which the particle size is small compared to the sound wavelength (R. W. O'Brien, J. Fluid Mech., 1990, 212, 81); for dilute suspensions of spherical particles there is a simple formula for calculating the zeta potential from such mobility measurements (R. W. O'Brien, J. Fluid Mech., 1988, 190, 71). In this paper we present experimental verification of the theory for a latex and a cobalt phosphate sol, both of which are monodisperse, over a range of electrolyte concentrations and pH. We also present electroacoustic titration data on two polydisperse TiO2 sols, and discuss the discrepancies that result when these data are compared with the monodisperse theory.

228 citations

Journal ArticleDOI
TL;DR: In this article, it is shown that the methods devised by Dukhin for solving the equations for a symmetric two species electrolyte can be simplified, and extended to the case of a general electrolyte.

214 citations

Journal ArticleDOI
TL;DR: This paper presents a simplified derivation of an equation first established by Dukhin and his collaborators for a large spherical particle with a thin double layer that compares very favourably with the computer calculations of O'Brien and White, provided κa is sufficiently large.
Abstract: Analytical approximation formulae linking ζ potential and electrophoretic mobility have been derived for a variety of limiting conditions. In this paper we present a simplified derivation of an equ...

167 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the dielectric response of a colloid in which the particle radius a is much greater than the double-layer thickness κ −1 and showed that such colloids exhibit two types of dielectrics dispersion: one at frequencies of order D / a 2, and the other at higher frequency of order κ 2 D where D is the ion diffusivity.

150 citations


Cited by
More filters
Journal ArticleDOI
05 Jan 2006-Nature
TL;DR: It is demonstrated that electrical charges on sterically stabilized nanoparticles determine B NSL stoichiometry; additional contributions from entropic, van der Waals, steric and dipolar forces stabilize the variety of BNSL structures.
Abstract: The assembly of nanoparticles of two different materials into a binary nanoparticle superlattice is a promising way of synthesizing a large variety of materials (metamaterials) with precisely controlled chemical composition and tight placement of the components. In theory only a few stable binary superlattice structures can assemble from hard spheres, potentially limiting this approach. But all is not lost because at the nanometre scale there are additional forces (electrostatic, van der Waals and dipolar) that can stabilize binary nanoparticulate structures. Shevchenko et al. now report the synthesis of a dozen novel structures from various combinations of metal, semiconductor, magnetic and dielectric nanoparticles. This demonstrates the potential of self-assembly in designing families of novel materials and metamaterials with programmable physical and chemical properties. Assembly of small building blocks such as atoms, molecules and nanoparticles into macroscopic structures—that is, ‘bottom up’ assembly—is a theme that runs through chemistry, biology and material science. Bacteria1, macromolecules2 and nanoparticles3 can self-assemble, generating ordered structures with a precision that challenges current lithographic techniques. The assembly of nanoparticles of two different materials into a binary nanoparticle superlattice (BNSL)3,4,5,6,7 can provide a general and inexpensive path to a large variety of materials (metamaterials) with precisely controlled chemical composition and tight placement of the components. Maximization of the nanoparticle packing density has been proposed as the driving force for BNSL formation3,8,9, and only a few BNSL structures have been predicted to be thermodynamically stable. Recently, colloidal crystals with micrometre-scale lattice spacings have been grown from oppositely charged polymethyl methacrylate spheres10,11. Here we demonstrate formation of more than 15 different BNSL structures, using combinations of semiconducting, metallic and magnetic nanoparticle building blocks. At least ten of these colloidal crystalline structures have not been reported previously. We demonstrate that electrical charges on sterically stabilized nanoparticles determine BNSL stoichiometry; additional contributions from entropic, van der Waals, steric and dipolar forces stabilize the variety of BNSL structures.

1,981 citations

Journal ArticleDOI
22 Jun 2010-ACS Nano
TL;DR: The present review critically investigates to what extent self-assembly can be directed, enhanced, or controlled by either changing the energy or entropy landscapes, using templates or applying external fields.
Abstract: Within the field of nanotechnology, nanoparticles are one of the most prominent and promising candidates for technological applications. Self-assembly of nanoparticles has been identified as an important process where the building blocks spontaneously organize into ordered structures by thermodynamic and other constraints. However, in order to successfully exploit nanoparticle self-assembly in technological applications and to ensure efficient scale-up, a high level of direction and control is required. The present review critically investigates to what extent self-assembly can be directed, enhanced, or controlled by either changing the energy or entropy landscapes, using templates or applying external fields.

1,938 citations

Book
01 Jan 1971
TL;DR: In this paper, Ozaki et al. describe the dynamics of adsorption and Oxidation of organic Molecules on Illuminated Titanium Dioxide Particles Immersed in Water.
Abstract: 1: Magnetic Particles: Preparation, Properties and Applications: M. Ozaki. 2: Maghemite (gamma-Fe2O3): A Versatile Magnetic Colloidal Material C.J. Serna, M.P. Morales. 3: Dynamics of Adsorption and Oxidation of Organic Molecules on Illuminated Titanium Dioxide Particles Immersed in Water M.A. Blesa, R.J. Candal, S.A. Bilmes. 4: Colloidal Aggregation in Two-Dimensions A. Moncho-Jorda, F. Martinez-Lopez, M.A. Cabrerizo-Vilchez, R. Hidalgo Alvarez, M. Quesada-PMerez. 5: Kinetics of Particle and Protein Adsorption Z. Adamczyk.

1,870 citations

Journal ArticleDOI
TL;DR: In this article, a review of the fundamental aspects of electrophoretic deposition technique, factors influencing the deposition process, kinetic aspects, types of EPD, the driving forces, preconditioning electrophoreic suspension, stability and control of suspension, mechanisms involved in EPD and drying of deposits obtained by EPD are discussed.

1,827 citations

Journal ArticleDOI
TL;DR: Biocompatibility, Pharmaceutical and Biomedical Applications L. Harivardhan Reddy,‡ Jose ́ L. Arias, Julien Nicolas,† and Patrick Couvreur*,†.
Abstract: Biocompatibility, Pharmaceutical and Biomedical Applications L. Harivardhan Reddy,†,‡ Jose ́ L. Arias, Julien Nicolas,† and Patrick Couvreur*,† †Laboratoire de Physico-Chimie, Pharmacotechnie et Biopharmacie, Universite ́ Paris-Sud XI, UMR CNRS 8612, Faculte ́ de Pharmacie, IFR 141, 5 rue Jean-Baptiste Cleḿent, F-92296 Chat̂enay-Malabry, France Departamento de Farmacia y Tecnología Farmaceútica, Facultad de Farmacia, Campus Universitario de Cartuja s/n, Universidad de Granada, 18071 Granada, Spain ‡Pharmaceutical Sciences Department, Sanofi, 13 Quai Jules Guesdes, F-94403 Vitry-sur-Seine, France

1,705 citations