scispace - formally typeset
Search or ask a question
Author

R. Wedepohl

Bio: R. Wedepohl is an academic researcher. The author has contributed to research in topics: Agriculture & Nonpoint source pollution. The author has an hindex of 2, co-authored 2 publications receiving 1620 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors brought together agricultural and limnological expertise to prioritize watershed management practices and remedial strategies to mitigate nonpoint-source impacts of agricultural P. The main issues facing the establishment of economically and environmentally sound P management systems are the identification of soil P levels that are of environmental concern; targeting specific controls for different water quality objectives within watersheds; and balancing economic with environmental values.
Abstract: The accelerated eutrophication of most freshwaters is limited by P inputs. Nonpoint sources of P in agricultural runoff now contribute a greater portion of freshwater inputs, due to easier identification and recent control of point sources. Although P management is an integral part of profitable agrisystems, continued inputs of fertilizer and manure P in excess of crop requirements have led to a build-up of soil P levels, which are of environmental rather than agronomic concern, particularly in areas of intensive crop and livestock production. Thus, the main issues facing the establishment of economically and environmentally sound P management systems are the identification of soil P levels that are of environmental concern; targeting specific controls for different water quality objectives within watersheds; and balancing economic with environmental values. In developing effective options, we have brought together agricultural and limnological expertise to prioritize watershed management practices and remedial strategies to mitigate nonpoint-source impacts of agricultural P. Options include runoff and erosion control and P-source management, based on eutrophic rather than agronomic considerations. Current soil test P methods may screen soils on which the aquatic bioavailability of P should be estimated. Landowner options to more efficiently utilize manure P include basing application rates on soil vulnerability to P loss in runoff, manure analysis, and programs encouraging manure movement to a greater hectareage. Targeting source areas may be achieved by use of indices to rank soil vulnerability to P loss in runoff and lake sensitivity to P inputs.

1,425 citations

Journal Article
TL;DR: In this paper, the importance of minimizing P in surface waters, procedures for identifying P-sensitive water bodies, and management approaches that limit P loss is presented, along with information on the forms and sources of P.
Abstract: Information on the forms and sources of P, the importance of minimizing P in surface waters, procedures for identifying P-sensitive water bodies, and management approaches that limit P loss is presented.

241 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a review of the available scientific information, they are confident that nonpoint pollution of surface waters with P and N could be reduced by reducing surplus nutrient flows in agricultural systems and processes, reducing agricultural and urban runoff by diverse methods, and reducing N emissions from fossil fuel burning, but rates of recovery are highly variable among water bodies.
Abstract: Agriculture and urban activities are major sources of phosphorus and nitrogen to aquatic ecosystems. Atmospheric deposition further contributes as a source of N. These nonpoint inputs of nutrients are difficult to measure and regulate because they derive from activities dispersed over wide areas of land and are variable in time due to effects of weather. In aquatic ecosystems, these nutrients cause diverse problems such as toxic algal blooms, loss of oxygen, fish kills, loss of biodiversity (including species important for commerce and recreation), loss of aquatic plant beds and coral reefs, and other problems. Nutrient enrichment seriously degrades aquatic ecosystems and impairs the use of water for drinking, industry, agriculture, recreation, and other purposes. Based on our review of the scientific literature, we are certain that (1) eutrophication is a widespread problem in rivers, lakes, estuaries, and coastal oceans, caused by overenrichment with P and N; (2) nonpoint pollution, a major source of P and N to surface waters of the United States, results primarily from agriculture and urban activity, including industry; (3) inputs of P and N to agriculture in the form of fertilizers exceed outputs in produce in the United States and many other nations; (4) nutrient flows to aquatic ecosystems are directly related to animal stocking densities, and under high livestock densities, manure production exceeds the needs of crops to which the manure is applied; (5) excess fertilization and manure production cause a P surplus to accumulate in soil, some of which is transported to aquatic ecosystems; and (6) excess fertilization and manure production on agricultural lands create surplus N, which is mobile in many soils and often leaches to downstream aquatic ecosystems, and which can also volatilize to the atmosphere, redepositing elsewhere and eventually reaching aquatic ecosystems. If current practices continue, nonpoint pollution of surface waters is virtually certain to increase in the future. Such an outcome is not inevitable, however, because a number of technologies, land use practices, and conservation measures are capable of decreasing the flow of nonpoint P and N into surface waters. From our review of the available scientific information, we are confident that: (1) nonpoint pollution of surface waters with P and N could be reduced by reducing surplus nutrient flows in agricultural systems and processes, reducing agricultural and urban runoff by diverse methods, and reducing N emissions from fossil fuel burning; and (2) eutrophication can be reversed by decreasing input rates of P and N to aquatic ecosystems, but rates of recovery are highly variable among water bodies. Often, the eutrophic state is persistent, and recovery is slow.

5,662 citations

BookDOI
TL;DR: In this paper, the authors present a set of methods for soil sampling and analysis, such as: N.H.Hendershot, H.M.Hettiarachchi, C.C.De Freitas Arbuscular Mycorrhiza, Y.K.Soon and W.J.
Abstract: SOIL SAMPLING AND HANDLING, G.T. Patterson and M.R. Carter Soil Sampling Designs, D. Pennock, T. Yates, and J. Braidek Sampling Forest Soils, N. Belanger and K.C.J. Van Rees Measuring Change in Soil Organic Carbon Storage, B.H. Ellert, H.H. Janzen, A.J. VandenBygaart, and E. Bremer Soil Sample Handling and Storage, S.C. Sheppard and J.A. Addison Quality Control in Soil Chemical Analysis, C. Swyngedouw and R. Lessard DIAGNOSTIC METHODS for SOIL and ENVIRONMENTAL MANAGEMENT, J.J. Schoenau and I.P. O'Halloran Nitrate and Exchangeable Ammonium Nitrogen, D.G. Maynard, Y.P. Kalra, and J.A. Crumbaugh Mehlich 3 Extractable Elements, N. Ziadi and T. Sen Tran Sodium Bicarbonate Extractable Phosphorus, J.J. Schoenau and I. P. O'Halloran Boron, Molybdenum and Selenium, G. M. Hettiarachchi and U. C. Gupta Trace Element Assessment, W.H. Hendershot, H. Lalande, D. Reyes, and D. MacDonald Readily Soluble Aluminum and Manganese in Acid Soils, Y.K. Soon, N. Belanger, and W.H. Hendershot Lime Requirement, N. Ziadi and T. Sen Tran Ion Supply Rates Using Ion Exchange Resins, P. Qian, J.J. Schoenau, and N. Ziadi Environmental Soil Phosphorus Indices, A.N. Sharpley, P.J.A. Kleinman and J.L. Weld Electrical Conductivity and Soluble Ions, J.J. Miller and D. Curtin SOIL CHEMICAL ANALYSES, Y.K. Soon and W.H. Hendershot Soil Reaction and Exchangeable Acidity, W.H. Hendershot, H. Laland,e and M. Duquette Collection and Characterization of Soil Solutions, J.D. MacDonald, N. Belanger, S. Sauve, F. Courchesne, and W.H. Hendershot Ion Exchange and Exchangeable Cations, W.H. Hendershot, H. Lalande, and M. Duquette Non-Exchangeable Ammonium, Y.K. Soon and B.C. Liang Carbonates, T.B. Goh and A.R. Mermut Total and Organic Carbon, J.O. Skjemstad and J.A. Baldock Total Nitrogen, P.M. Rutherford, W.B. McGill, C.T. Figueiredo, and J.M. Arocena Chemical Characterization of Soil Sulphur, C.G. Kowalenko and M. Grimmett Total and Organic Phosphorus, I.P. O'Halloran and B.J. Cade-Menum Characterization of Available P by Sequential Extraction, H. Tiessen and J.O. Moir Extractable Al, Fe, Mn, and Si, F. Courchesne and M.C. Turmel Determining Nutrient Availability in Forest Soils, N. Belanger, David Pare, and W.H. Hendershot Chemical Properties of Organic Soils, A. Karam SOIL BIOLOGICAL ANALYSES, E. Topp and C.A. Fox Cultural Methods for Soil and Root Associated Microorganisms, J.J. Germida and J.R. de Freitas Arbuscular Mycorrhiza, Y. Dalpe and C. Hamel Root Nodule Bacteria and Symbiotic Nitrogen Fixation, D. Prevost and H. Antoun Microarthropods, J.P Winter and V.M. Behan-Pelletier Nematodes, T.A. Forge and J. Kimpinski Earthworms, M.J. Clapperton, G.H. Baker and C.A. Fox Enchytraeids, S.M. Adl Protozoa, S.M. Adl, D. Acosta-Mercado, and D.H. Lynn Denitrification Techniques for Soils, C.F. Drury, D.D. Myrold, E.G. Beauchamp, and W.D.Reynolds Nitrification Techniques in Soil Systems, C.F. Drury, S.C. Hart, and X.M. Yang Substrate-Induced Respiration and Selective Inhibition as Measures of Microbial Biomass in Soils, V.L. Bailey, J.L. Smith, and H. Bolton Jr. Assessment of Soil Biological Activity, R.P.Beyaert and C.A. Fox Soil ATP, R.P. Voroney, G. Wen, and R.P. Beyaert Lipid-Based Community Analysis, K.E. Dunfield Bacterial Community Analyses by Denaturing Gradient Gel Electrophoresis (DGGE), E. Topp, Y.-C. Tien, and A. Hartmann Indicators of Soil Food Web Properties, T.A. Forge and M. Tenuta SOIL ORGANIC MATTER ANALYSES, E.G. Gregorich and M.H. Beare Carbon Mineralization, D.W. Hopkins Mineralizable Nitrogen, Denis Curtin and C.A. Campbell Physically Uncomplexed Organic Matter, E.G. Gregorich and M.H. Beare Extraction and Characterization of Dissolved Organic Matter, M.H. Chantigny, D.A. Angers, K. Kaiser, and K. Kalbitz Soil Microbial Biomass C, N, P and S, R.P. Voroney, P.C. Brookes, and R.P. Beyaert Carbohydrates, M.H. Chantigny and D.A. Angers Organic Forms of Nitrogen, D.C. Olk Soil Humus Fractions, D.W. Anderson and J.J Schoenau Soil Organic Matter Analysis by Solid-State 13C Nuclear Magnetic Resonance Spectroscopy, M. J. Simpson and C. M. Preston Stable Isotopes in Soil and Environmental Research, B.H. Ellert and L. Rock SOIL PHYSICAL ANALYSES, D.A. Angers and F.J. Larney Particle Size Distribution, D. Kroetsch and C. Wang Soil Shrinkage, C.D. Grant Soil Density and Porosity, X. Hao, B.C. Ball, J.L.B. Culley, M.R. Carter, and G.W. Parkin Soil Consistency: Upper and Lower Plastic Limits, R.A. McBride Compaction and Compressibility, P. Defossez, T. Keller and G. Richard Field Soil Strength, G.C. Topp and D.R. Lapen Air Permeability, C.D. Grant and P.H. Groenevelt Aggregate Stability to Water, D.A. Angers, M.S. Bullock, and G.R. Mehuys Dry Aggregate Size Distribution, F.J. Larney Soil Air, R.E. Farrell and J.A. Elliott Soil-Surface Gas Emissions, P. Rochette and N. Bertrand Bulk Density Measurement in Forest Soils, D.G. Maynard and M.P. Curran Physical Properties of Organic Soils and Growing Media: Particle Size and Degree of Decomposition, L.E. Parent and J. Caron Physical Properties of Organic Soils and Growing Media: Water and Air Storage and Flow Dynamics, J. Caron, D.E. Elrick, J.C. Michel, and R. Naasz SOIL WATER ANALYSES, W.D. Reynolds and G.C. Topp Soil Water Analyses: Principles and Parameters, W.D. Reynolds and G.C. Topp Soil Water Content, G.C. Topp, G.W. Parkin, and Ty P.A Ferre Soil Water Potential, N.J. Livingston and G.C. Topp Soil Water Desorption and Imbibition: Tension and Pressure Techniques, W.D. Reynolds and G.C. Topp Soil Water Desorption and Imbibition: Long Column, W.D. Reynolds and G.C. Topp Soil Water Desorption and Imbibition: Psychrometry, W.D. Reynolds and G.C. Topp Saturated Hydraulic Properties: Laboratory Methods, W.D. Reynolds Saturated Hydraulic Properties: Well Permeameter, W.D. Reynolds Saturated Hydraulic Properties: Ring Infiltrometer, W.D. Reynolds Saturated Hydraulic Properties: Auger-Hole, G.C. Topp Saturated Hydraulic Properties: Piezometer, G.C. Topp Unsaturated Hydraulic Properties: Laboratory Tension Infiltrometer, F.J. Cook Unsaturated Hydraulic Properties: Laboratory Evaporation, O.O. B. Wendroth and N. Wypler Unsaturated Hydraulic Properties: Field Tension Infiltrometer, W.D. Reynolds Unsaturated Hydraulic Properties: Instantaneous Profile, W.D. Reynolds Estimation of Soil Hydraulic Properties, F.J. Cook and H.P. Cresswell Analysis of Soil Variability, B.C. Si, R.G. Kachanoski, and W.D. Reynolds APPENDIX Site Description, G.T. Patterson and J.A. Brierley General Safe Laboratory Operation Procedures, P. St-Georges INDEX

4,631 citations

Journal ArticleDOI
TL;DR: A typology of relationships between ecosystem services based on the role of drivers and the interactions between services is proposed to help drive ecological science towards a better understanding of the relationships among multiple ecosystem services.
Abstract: Ecosystem management that attempts to maximize the production of one ecosystem service often results in substantial declines in the provision of other ecosystem services. For this reason, recent studies have called for increased attention to development of a theoretical understanding behind the relationships among ecosystem services. Here, we review the literature on ecosystem services and propose a typology of relationships between ecosystem services based on the role of drivers and the interactions between services. We use this typology to develop three propositions to help drive ecological science towards a better understanding of the relationships among multiple ecosystem services. Research which aims to understand the relationships among multiple ecosystem services and the mechanisms behind these relationships will improve our ability to sustainably manage landscapes to provide multiple ecosystem services.

1,836 citations

Journal ArticleDOI
TL;DR: An agricultural mass balance (budget) was calculated, which indicated that a large portion of this P accumulation occurs in agricultural soils, and showed that the rate of P accumulation is decreasing in developed nations but increasing in developing nations.
Abstract: Human actions—mining phosphorus (P) and transporting it in fertilizers, animal feeds, agricultural crops, and other products—are altering the global P cycle, causing P to accumulate in some of the world’s soil. Increasing P levels in the soil elevate the potential P runoff to aquatic ecosystems (Fluck et al. 1992, NRC 1993, USEPA 1996). Using a global budget approach, we estimate the increase in net P storage in terrestrial and freshwater ecosystems to be at least 75% greater than preindustrial levels of storage. We calculated an agricultural mass balance (budget), which indicated that a large portion of this P accumulation occurs in agricultural soils. Separate P budgets of the agricultural areas of developing and developed countries show that the rate of P accumulation is decreasing in developed nations but increasing in developing nations.

984 citations

Journal ArticleDOI
TL;DR: In this article, a review of relevant agricultural studies is presented as well as recommendations for improving MSW compost quality, which can be ensured with source separation and triage of MSW to be composted.

805 citations