scispace - formally typeset
Search or ask a question
Author

R. Yarema

Bio: R. Yarema is an academic researcher. The author has contributed to research in topics: NuMI & Neutrino oscillation. The author has an hindex of 2, co-authored 2 publications receiving 84 citations.

Papers
More filters
D. S. Ayres, Alexandre Lebedev, Karol Lang, R. L. Talaga, J. J. Grudzinski, John Oliver, A. C. Weber, R. Wands, T. Patzak, D. Cronin-Hennessy, Thomas R. Chase, Sacha E Kopp, R. S. Miller, S. Murgia, P. Stamoulis, Gary Drake, C. Howcroft, I. Trostin, Alec Habig, D. A. Harris, Francisco Yumiceva, Subhasmita Mishra, G. M. Irwin, J. L. Thron, J. A. Musser, B. Rebel, David Petyt, John W. Cooper, P. Shanahan, J. Huston, D. Koolbeck, V. Makeev, J. Trevor, P. J. Litchfield, J. Boehm, J. Schneps, S. R. Mishra, Warner A. Miller, O. Mena, G. J. Feldman, G.D. Barr, J. K. Nelson, K. Lee, H. R. Gallagher, V. A. Ryabov, V. J. Guarino, Roger Rusack, K. Grzelak, C. Rosenfeld, C. W. Peck, E. Tetteh-Lartey, K. Nelson, Rebecca Bernstein, Marvin L Marshak, Stephen J. Parke, G. F. Pearce, S. J. Brice, S. Stiliaris, J. Hanson, R. Schmitt, Mcd Sanchez, A. Belias, E. A. Peterson, A. Sousa, S. Mufson, H. Zheng, S. M. Seun, G. Tzanakos, J. W. Dawson, C. Bromberg, T. Joffe-Minor, Carl H. Albright, R. Hatcher, N. Felt, N. Giokaris, D. Drakoulakos, T. Bergfeld, A.K. Opper, J.H. Cobb, J. Hylen, D. G. Michael, T. Zhao, N. Tagg, T. Kafka, J. Urheim, A. V. Waldron, R. A. Richards, T. Yang, S. Childress, B. C. Choudhary, J. Rothberg, David B. Cline, T. Durkin, M. Zois, R.A. Rameika, R. C. Webb, D. E. Reyna, R.G. Wagner, C. Dukes, G. J. Bock, S.M. Grimes, W. A. Mann, A. Godley, Ken Heller, M. C. Goodman, Manfred Lindner, R. K. Plunkett, L. Camilleri, Stanley G. Wojcicki, R. Yarema, L. Mualem, K. Ruddick, R. E. Ray, R. Shrock, C. R. Bower, H. Jostlein, Panagiotis Spentzouris, J. Kilmer, T. Nicholls, Harvey B Newman, P. Lucas, S. Avvakumov, John F. Beacom, Hiroshi Nunokawa, C.R. Brune 
07 Jun 2004
TL;DR: A 30 kiloton tracking calorimeter with liquid scintillator filled PVC extrusion modules is proposed in the NOvA proposal as mentioned in this paper, with alternating horizontal and vertical rectangular cells.
Abstract: This is an updated version of the NOvA proposal The detector is a 30 kiloton tracking calorimeter, 157 m by 157 m by 132 m long, with alternating horizontal and vertical rectangular cells of liquid scintillator contained in PVC extrusion modules Light from each 157 m long cell of liquid scintillator filled PVC is collected by a wavelength shifting fiber and routed to an avalanche photodiode pixel The reach of NOvA for sin^2(2_theta_13) and related topics is increased relative to earlier versions of the proposal with the assumption of increased protons available from the Fermilab Main Injector following the end of Tevatron Collider operations in 2009

46 citations

D. S. Ayres, Alexandre Lebedev, Karol Lang, R. L. Talaga, J. J. Grudzinski, John Oliver, A. C. Weber, R. Wands, T. Patzak, D. Cronin-Hennessy, Thomas R. Chase, Sacha E Kopp, R. S. Miller, S. Murgia, P. Stamoulis, Gary Drake, C. Howcroft, I. Trostin, Alec Habig, D. A. Harris, Francisco Yumiceva, Subhasmita Mishra, G. M. Irwin, J. L. Thron, J. Musser, B. Rebel, David Petyt, P. Shanahan, J. Huston, D. Koolbeck, V. Makeev, J. Trevor, P. J. Litchfield, J. Boehm, J. Schneps, S. R. Mishra, Warner A. Miller, O. Mena, G. J. Feldman, G.D. Barr, J. K. Nelson, K. Lee, H. R. Gallagher, V. A. Ryabov, Victor Guarino, Roger Rusack, K. Grzelak, C. Rosenfeld, C. W. Peck, E. Tetteh-Lartey, K. Nelson, Rebecca Bernstein, Marvin L Marshak, Stephen J. Parke, G. F. Pearce, S. J. Brice, S. Stiliaris, J. Hanson, R. Schmitt, Mcd Sanchez, A. Belias, E. A. Peterson, A. Sousa, S. Mufson, H. Zheng, S. M. Seun, G. Tzanakos, J. W. Dawson, C. Bromberg, T. Joffe-Minor, Carl H. Albright, R. Hatcher, N. Felt, N. Giokaris, D. Drakoulakos, T. Bergfeld, A.K. Opper, J.H. Cobb, J. Hylen, D. G. Michael, T. Zhao, N. Tagg, T. Kafka, J. Urheim, John W. Cooper, A. V. Waldron, R. A. Richards, T. Yang, S. Childress, B. C. Choudhary, J. Rothberg, David B. Cline, T. Durkin, M. Zois, R.A. Rameika, R. C. Webb, D. E. Reyna, R.G. Wagner, C. Dukes, G. J. Bock, S.M. Grimes, W. A. Mann, A. Godley, Ken Heller, M. C. Goodman, Manfred Lindner, R. K. Plunkett, L. Camilleri, Stanley G. Wojcicki, R. Yarema, L. Mualem, K. Ruddick, R. E. Ray, R. Shrock, C. R. Bower, H. Jostlein, Panagiotis Spentzouris, J. Kilmer, T. Nicholls, Harvey B Newman, P. Lucas, S. Avvakumov, John F. Beacom, Hiroshi Nunokawa, C.R. Brune 
01 Jan 2004

41 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the mass hierarchy of the neutrino sector was determined by combining high precision measurements of the atmospheric $ensuremath{delta{m}^{2}$ in both the electron and muon neutrinos disappearance channels.
Abstract: We show that by combining high precision measurements of the atmospheric $\ensuremath{\delta}{m}^{2}$ in both the electron and muon neutrino (or antineutrino) disappearance channels one can determine the neutrino mass hierarchy. The required precision is a very challenging fraction of one per cent for both measurements. At even higher precision, sensitivity to the cosine of the $CP$ violating phase is also possible. This method for determining the mass hierarchy of the neutrino sector does not depend on matter effects.

215 citations

Journal ArticleDOI
TL;DR: In this article, the type of the neutrino mass ordering (normal versus inverted) is determined and a statistical interpretation of the statistical interpretation is given. But, it is not discussed in this paper.
Abstract: Determining the type of the neutrino mass ordering ( normal versus inverted) is one of the most important open questions in neutrino physics In this paper we clarify the statistical interpretation

168 citations

Journal ArticleDOI
A. Kumar1, A M Vinod Kumar2, Abhik Jash3, Abhik Jash4, Ajit Kumar Mohanty3, Ajit Kumar Mohanty5, Aleena Chacko6, Ali Ajmi7, Ali Ajmi3, Ambar Ghosal3, Ambar Ghosal4, Amina Khatun3, Amitava Raychaudhuri8, Amol Dighe9, Animesh Chatterjee10, Animesh Chatterjee3, Ankit Gaur11, Anushree Ghosh10, Anushree Ghosh3, Ashok Kumar11, A. Redij9, B. Satyanarayana9, B. S. Acharya9, Brajesh C Choudhary11, C. Ranganathaiah12, C. D. Ravikumar2, Chandan Gupta3, Chandan Gupta13, D. Indumathi3, Daljeet Kaur11, Debasish Majumdar4, Debasish Majumdar3, D. Samuel9, Deepak Tiwari3, Deepak Tiwari10, G Rajasekaran3, Gautam Gangopadhyay8, Gobinda Majumder9, H. B. Ravikumar12, Jasvinder A. Singh1, J. Shahi1, J. Libby6, Jyotsna Singh14, K. Raveendrababu6, K. Raveendrababu3, K K Meghna3, K. R. Rebin6, Kamalesh Kar4, Kamalesh Kar3, K. Bhattacharya9, Lalit Mohan Pant3, Lalit Mohan Pant5, M. Sajjad Athar15, M. V. N. Murthy3, Manzoor A. Malik16, Naimuddin11, Mohammad Salim15, Monojit Ghosh13, Moon Moon Devi3, Moon Moon Devi9, N.K. Mondal9, Nayana Majumdar3, Nayana Majumdar4, N Sinha3, N. Dash5, N. Dash3, Pomita Ghoshal13, Poonam Mehta17, Prafulla Kumar Behera6, R. Kanishka1, R. Gandhi3, R. Gandhi10, Rajesh Ganai18, Rajesh Ganai3, Rashid Hasan15, S. Krishnaveni12, S. M. Lakshmi3, S. K. Singh15, S.S.R. Inbanathan19, S. Uma Sankar7, Sadiq Jafer6, Saikat Biswas3, Saikat Biswas18, Sanjeev Kumar11, Sanjib Kumar Agarwalla3, Sandhya Choubey3, Sandhya Choubey10, Satyajit Saha3, Satyajit Saha4, Shakeel Ahmed15, S. P. Behera5, S. P. Behera3, Srubabati Goswami13, Subhasis Chattopadhyay3, Subhasis Chattopadhyay18, Sudeb Bhattacharya3, Sudeb Bhattacharya4, Sw. Banerjee9, Sudeshna Dasgupta9, Sumanta Pal3, Supratik Mukhopadhyay4, Supratik Mukhopadhyay3, Sushant K. Raut13, S. Bose3, S. Bose4, Swapna Mahapatra20, T.K. Ghosh18, T.K. Ghosh3, Tarak Thakore9, V K S Kashyap5, V K S Kashyap3, V. S. Subrahmanyam21, V. Singh21, V.B. Chandratre3, V.B. Chandratre5, Vipin Bhatnagar1, V. M. Datar5, V. M. Datar9, W. Bari16, Y. P. Viyogi18, Y. P. Viyogi3 
26 Apr 2017-Pramana
TL;DR: In this paper, the authors presented the physics potential of the ICAL detector as obtained from realistic detector simulations and gave the expected physics reach of the detector with 10 years of runtime.
Abstract: The upcoming 50 kt magnetized iron calorimeter (ICAL) detector at the India-based Neutrino Observatory (INO) is designed to study the atmospheric neutrinos and antineutrinos separately over a wide range of energies and path lengths. The primary focus of this experiment is to explore the Earth matter effects by observing the energy and zenith angle dependence of the atmospheric neutrinos in the multi-GeV range. This study will be crucial to address some of the outstanding issues in neutrino oscillation physics, including the fundamental issue of neutrino mass hierarchy. In this document, we present the physics potential of the detector as obtained from realistic detector simulations. We describe the simulation framework, the neutrino interactions in the detector, and the expected response of the detector to particles traversing it. The ICAL detector can determine the energy and direction of the muons to a high precision, and in addition, its sensitivity to multi-GeV hadrons increases its physics reach substantially. Its charge identification capability, and hence its ability to distinguish neutrinos from antineutrinos, makes it an efficient detector for determining the neutrino mass hierarchy. In this report, we outline the analyses carried out for the determination of neutrino mass hierarchy and precision measurements of atmospheric neutrino mixing parameters at ICAL, and give the expected physics reach of the detector with 10 years of runtime. We also explore the potential of ICAL for probing new physics scenarios like CPT violation and the presence of magnetic monopoles.

116 citations

Journal ArticleDOI
TL;DR: A synergy of different types of experiments, especially those with matter density variation, is necessary to identify the scalar NSI and guarantee the measurement of CP violation at accelerator experiments.
Abstract: The scalar nonstandard interactions (NSI) can also introduce matter effect for neutrino oscillation in a medium. Especially the recent Borexino data prefer nonzero scalar NSI, η_{ee}=-0.16. In contrast to the conventional vector NSI, the scalar type contributes as a correction to the neutrino mass matrix rather than the matter potential. Consequently, the scalar matter effect is energy independent while the vector one scales linearly with neutrino energy. This leads to significantly different phenomenological consequences in reactor, solar, atmospheric, and accelerator neutrino oscillations. A synergy of different types of experiments, especially those with matter density variation, is necessary to identify the scalar NSI and guarantee the measurement of CP violation at accelerator experiments.

69 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigate synergies between the NOvA long-baseline accelerator experiment with atmospheric neutrino data from the India-based Neutrino Observatory (INO), and identify the requirements on energy and direction reconstruction and detector mass for INO necessary for a significant sensitivity.
Abstract: The relatively large value of θ 13 established recently by the Daya Bay reactor experiment opens the possibility to determine the neutrino mass ordering with experiments currently under construction. We investigate synergies between the NOvA long-baseline accelerator experiment with atmospheric neutrino data from the India-based Neutrino Observatory (INO). We identify the requirements on energy and direction reconstruction and detector mass for INO necessary for a significant sensitivity. If neutrino energy and direction reconstruction at the level of 10% and 10° can be achieved by INO a determination of the neutrino mass ordering seems possible around 2020.

67 citations