scispace - formally typeset
Search or ask a question
Author

Rachael Poon

Bio: Rachael Poon is an academic researcher from Australian Research Council. The author has contributed to research in topics: Clostridium perfringens & Virulence. The author has an hindex of 10, co-authored 12 publications receiving 1192 citations. Previous affiliations of Rachael Poon include Monash University & Monash University, Clayton campus.

Papers
More filters
Journal ArticleDOI
30 Apr 2009-Nature
TL;DR: The construction of isogenic tcdA and tcdB mutants of a virulent C. difficile strain are described and their use in the hamster disease model is used to show that toxin B is a key virulence determinant.
Abstract: Clostridium difficile is the leading cause of infectious diarrhoea in hospitals worldwide, because of its virulence, spore-forming ability and persistence. C. difficile-associated diseases are induced by antibiotic treatment or disruption of the normal gastrointestinal flora. Recently, morbidity and mortality resulting from C. difficile-associated diseases have increased significantly due to changes in the virulence of the causative strains and antibiotic usage patterns. Since 2002, epidemic toxinotype III NAP1/027 strains, which produce high levels of the major virulence factors, toxin A and toxin B, have emerged. These toxins have 63% amino acid sequence similarity and are members of the large clostridial glucosylating toxin family, which are monoglucosyltransferases that are pro-inflammatory, cytotoxic and enterotoxic in the human colon. Inside host cells, both toxins catalyse the transfer of glucose onto the Rho family of GTPases, leading to cell death. However, the role of these toxins in the context of a C. difficile infection is unknown. Here we describe the construction of isogenic tcdA and tcdB (encoding toxin A and B, respectively) mutants of a virulent C. difficile strain and their use in the hamster disease model to show that toxin B is a key virulence determinant. Previous studies showed that purified toxin A alone can induce most of the pathology observed after infection of hamsters with C. difficile and that toxin B is not toxic in animals unless it is co-administered with toxin A, suggesting that the toxins act synergistically. Our work provides evidence that toxin B, not toxin A, is essential for virulence. Furthermore, it is clear that the importance of these toxins in the context of infection cannot be predicted exclusively from studies using purified toxins, reinforcing the importance of using the natural infection process to dissect the role of toxins in disease.

718 citations

Journal ArticleDOI
TL;DR: The results highlight the importance of beta toxin for type C-induced toxemia and surveyed a large collection of type C isolates to determine their toxin-producing abilities.
Abstract: The gram-positive anaerobe Clostridium perfringens produces a large arsenal of toxins that are responsible for histotoxic and enteric infections, including enterotoxemias, in humans and domestic animals. C. perfringens type C isolates, which cause rapidly fatal diseases in domestic animals and enteritis necroticans in humans, contain the genes for alpha toxin (plc), perfringolysin O (pfoA), beta toxin (cpb), and sometimes beta2 toxin (cpb2) and/or enterotoxin (cpe). Due to the economic impact of type C-induced diseases, domestic animals are commonly vaccinated with crude type C toxoid (prepared from inactivated culture supernatants) or bacterin/toxoid vaccines, and it is not clear which toxin(s) present in these vaccines actually elicits the protective immune response. To improve type C vaccines, it would be helpful to assess the contribution of each toxin present in type C supernatants to lethality. To address this issue, we surveyed a large collection of type C isolates to determine their toxin-producing abilities. When late-log-phase vegetative culture supernatants were analyzed by quantitative Western blotting or activity assays, most type C isolates produced at least three lethal toxins, alpha toxin, beta toxin, and perfringolysin O, and several isolates also produced beta2 toxin. In the mouse intravenous injection model, beta toxin was identified as the main lethal factor present in type C late-log-phase culture supernatants. This conclusion was based on monoclonal antibody neutralization studies and regression analyses in which the levels of alpha toxin, beta toxin, perfringolysin O, and beta2 toxin production were compared with lethality. Collectively, our results highlight the importance of beta toxin for type C-induced toxemia.

85 citations

Journal ArticleDOI
TL;DR: It is indicated that ETX is necessary for type D isolates to induce disease, supporting a key role for this toxin in type D disease pathogenesis.
Abstract: Clostridium perfringens type D causes disease in sheep, goats, and other ruminants. Type D isolates produce, at minimum, alpha and epsilon (ETX) toxins, but some express up to five different toxins, raising questions about which toxins are necessary for the virulence of these bacteria. We evaluated the contribution of ETX to C. perfringens type D pathogenicity in an intraduodenal challenge model in sheep, goats, and mice using a virulent C. perfringens type D wild-type strain (WT), an isogenic ETX null mutant (etx mutant), and a strain where the etx mutation has been reversed (etx complemented). All sheep and goats, and most mice, challenged with the WT isolate developed acute clinical disease followed by death in most cases. Sheep developed various gross and/or histological changes that included edema of brain, lungs, and heart as well as hydropericardium. Goats developed various effects, including necrotizing colitis, pulmonary edema, and hydropericardium. No significant gross or histological abnormalities were observed in any mice infected with the WT strain. All sheep, goats, and mice challenged with the isogenic etx mutant remained clinically healthy for ≥24 h, and no gross or histological abnormalities were observed in those animals. Complementation of etx knockout restored virulence; most goats, sheep, and mice receiving this complemented mutant developed clinical and pathological changes similar to those observed in WT-infected animals. These results indicate that ETX is necessary for type D isolates to induce disease, supporting a key role for this toxin in type D disease pathogenesis.

82 citations

Journal ArticleDOI
TL;DR: This study demonstrated the fluid nature of the toxinotypes and their dependence upon the presence or absence of toxin plasmids, some of which have for the first time been shown to be conjugative.
Abstract: Isolates of Clostridium perfringens type D produce the potent epsilon-toxin (a CDC/U.S. Department of Agriculture overlap class B select agent) and are responsible for several economically significant enterotoxemias of domestic livestock. It is well established that the epsilon-toxin structural gene, etx , occurs on large plasmids. We show here that at least two of these plasmids are conjugative. The etx gene on these plasmids was insertionally inactivated using a chloramphenicol resistance cassette to phenotypically tag the plasmid. High-frequency conjugative transfer of the tagged plasmids into the C. perfringens type A strain JIR325 was demonstrated, and the resultant transconjugants were shown to act as donors in subsequent mating experiments. We also demonstrated the transfer of “unmarked” native e-toxin plasmids into strain JIR325 by exploiting the high transfer frequency. The transconjugants isolated in these experiments expressed functional e-toxin since their supernatants had cytopathic effects on MDCK cells and were toxic in mice. Using the widely accepted multiplex PCR approach for toxin genotyping, these type A-derived transconjugants were genotypically type D. These findings have significant implications for the C. perfringens typing system since it is based on the toxin profile of each strain. Our study demonstrated the fluid nature of the toxinotypes and their dependence upon the presence or absence of toxin plasmids, some of which have for the first time been shown to be conjugative.

76 citations

Journal ArticleDOI
TL;DR: Results indicate that, under the experimental conditions used in the present study, ETX is necessary for the lethal properties of most genotype D vegetative supernatants in the mouse i.v. injection model.
Abstract: Clostridium perfringens type D enterotoxemias have significant economic impact by causing rapid death of several domestic animal species. Consequently, domestic animals are commonly vaccinated, at varying efficacy, with inactivated type D vegetative supernatants. Improved type D vaccines might become possible if the lethal toxins produced by type D isolates were characterized and the contributions of those toxins to supernatant-induced lethality were established. Therefore, the current study evaluated the presence of lethal toxins in supernatants prepared from late-log-phase vegetative cultures of a large collection of genotype D isolates. Under this growth condition, most genotype D isolates produced variable levels of at least three different lethal toxins, including epsilon-toxin (ETX). To model the rapid lethality of type D enterotoxemias, studies were conducted involving intravenous (i.v.) injection of genotype D vegetative supernatants into mice, which were then observed for neurotoxic distress. Those experiments demonstrated a correlation between ETX (but not alpha-toxin or perfringolysin O) levels in late-log-phase genotype D supernatants and lethality. Consistent with the known proteolytic activation requirement for ETX toxicity, trypsin pretreatment was required for, or substantially increased, the lethality of nearly all of the tested genotype D vegetative supernatants. Finally, the lethality of these trypsin-pretreated genotype D supernatants could be completely neutralized by an ETX-specific monoclonal antibody but not by an alpha-toxin-specific monoclonal antibody. Collectively, these results indicate that, under the experimental conditions used in the present study, ETX is necessary for the lethal properties of most genotype D vegetative supernatants in the mouse i.v. injection model.

72 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This guideline updates recommendations regarding epidemiology, diagnosis, treatment, and infection control and environmental management of Clostridium difficile.
Abstract: Since publication of the Society for Healthcare Epidemiology of America position paper on Clostridium difficile infection in 1995, significant changes have occurred in the epidemiology and treatment of this infection. C. difficile remains the most important cause of healthcareassociated diarrhea and is increasingly important as a community pathogen. A more virulent strain of C. difficile has been identified and has been responsible for more-severe cases of disease worldwide. Data reporting the decreased effectiveness of metronidazole in the treatment of severe disease have been published. Despite the increasing quantity of data available, areas of controversy still exist. This guideline updates recommendations regarding epidemiology, diagnosis, treatment, and infection control and environmental management.

2,872 citations

Journal ArticleDOI
TL;DR: Since 2001, the prevalence and severity of C. difficile infection has increased significantly, which has led to increased research interest and the discovery of new virulence factors, and has expanded and focused the development of new treatment and prevention regimens.
Abstract: Clostridium difficile is now considered to be one of the most important causes of health care-associated infections. C. difficile infections are also emerging in the community and in animals used for food, and are no longer viewed simply as unpleasant complications that follow antibiotic therapy. Since 2001, the prevalence and severity of C. difficile infection has increased significantly, which has led to increased research interest and the discovery of new virulence factors, and has expanded and focused the development of new treatment and prevention regimens. This Review summarizes the recent epidemiological changes in C. difficile infection, our current knowledge of C. difficile virulence factors and the clinical outcomes of C. difficile infection.

1,339 citations

Journal ArticleDOI
TL;DR: A comprehensive review highlights recent advances in understanding of the intestinal pathotypes of E. coli, which carry an enormous potential to cause disease and continue to present challenges to human health.
Abstract: Although Escherichia coli can be an innocuous resident of the gastrointestinal tract, it also has the pathogenic capacity to cause significant diarrheal and extraintestinal diseases. Pathogenic variants of E. coli (pathovars or pathotypes) cause much morbidity and mortality worldwide. Consequently, pathogenic E. coli is widely studied in humans, animals, food, and the environment. While there are many common features that these pathotypes employ to colonize the intestinal mucosa and cause disease, the course, onset, and complications vary significantly. Outbreaks are common in developed and developing countries, and they sometimes have fatal consequences. Many of these pathotypes are a major public health concern as they have low infectious doses and are transmitted through ubiquitous mediums, including food and water. The seriousness of pathogenic E. coli is exemplified by dedicated national and international surveillance programs that monitor and track outbreaks; unfortunately, this surveillance is often lacking in developing countries. While not all pathotypes carry the same public health profile, they all carry an enormous potential to cause disease and continue to present challenges to human health. This comprehensive review highlights recent advances in our understanding of the intestinal pathotypes of E. coli.

1,097 citations

Journal ArticleDOI
TL;DR: The evidence for the changing epidemiology, clinical virulence and outcome of treatment of CDI is reviewed, and the similarities and differences between data from various countries and continents are reviewed.
Abstract: Summary: The epidemiology of Clostridium difficile infection (CDI) has changed dramatically during this millennium. Infection rates have increased markedly in most countries with detailed surveillance data. There have been clear changes in the clinical presentation, response to treatment, and outcome of CDI. These changes have been driven to a major degree by the emergence and epidemic spread of a novel strain, known as PCR ribotype 027 (sometimes referred to as BI/NAP1/027). We review the evidence for the changing epidemiology, clinical virulence and outcome of treatment of CDI, and the similarities and differences between data from various countries and continents. Community-acquired CDI has also emerged, although the evidence for this as a distinct new entity is less clear. There are new data on the etiology of and potential risk factors for CDI; controversial issues include specific antimicrobial agents, gastric acid suppressants, potential animal and food sources of C. difficile, and the effect of the use of alcohol-based hand hygiene agents.

794 citations

Journal ArticleDOI
07 Oct 2010-Nature
TL;DR: It is shown that isogenic mutants of C. difficile producing either toxin A or toxin B alone can cause fulminant disease in the hamster model of infection, re-establish the importance of both toxin A and toxin B and highlight the need to continue to consider both toxins in the development of diagnostic tests and effective countermeasures against C. diffuse.
Abstract: Clostridium difficile infection is the leading cause of healthcare-associated diarrhoea in Europe and North America. During infection, C. difficile produces two key virulence determinants, toxin A and toxin B. Experiments with purified toxins have indicated that toxin A alone is able to evoke the symptoms of C. difficile infection, but toxin B is unable to do so unless it is mixed with toxin A or there is prior damage to the gut mucosa. However, a recent study indicated that toxin B is essential for C. difficile virulence and that a strain producing toxin A alone was avirulent. This creates a paradox over the individual importance of toxin A and toxin B. Here we show that isogenic mutants of C. difficile producing either toxin A or toxin B alone can cause fulminant disease in the hamster model of infection. By using a gene knockout system to inactivate the toxin genes permanently, we found that C. difficile producing either one or both toxins showed cytotoxic activity in vitro that translated directly into virulence in vivo. Furthermore, by constructing the first ever double-mutant strain of C. difficile, in which both toxin genes were inactivated, we were able to completely attenuate virulence. Our findings re-establish the importance of both toxin A and toxin B and highlight the need to continue to consider both toxins in the development of diagnostic tests and effective countermeasures against C. difficile.

761 citations