scispace - formally typeset
Search or ask a question
Author

Rachel Rudinger

Bio: Rachel Rudinger is an academic researcher from Allen Institute for Artificial Intelligence. The author has contributed to research in topics: Inference & Sentence. The author has an hindex of 20, co-authored 46 publications receiving 2126 citations. Previous affiliations of Rachel Rudinger include Yale University & University of Maryland, College Park.

Papers published on a yearly basis

Papers
More filters
Proceedings ArticleDOI
02 May 2018
TL;DR: This article proposed a hypothesis-only baseline for diagnosing NLI, which is able to significantly outperform a majority-class baseline across a number of NLI datasets, and showed that statistical irregularities may allow a model to perform NLI in some datasets beyond what should be achievable without access to the context.
Abstract: We propose a hypothesis only baseline for diagnosing Natural Language Inference (NLI). Especially when an NLI dataset assumes inference is occurring based purely on the relationship between a context and a hypothesis, it follows that assessing entailment relations while ignoring the provided context is a degenerate solution. Yet, through experiments on 10 distinct NLI datasets, we find that this approach, which we refer to as a hypothesis-only model, is able to significantly outperform a majority-class baseline across a number of NLI datasets. Our analysis suggests that statistical irregularities may allow a model to perform NLI in some datasets beyond what should be achievable without access to the context.

421 citations

Posted Content
TL;DR: This paper presented an empirical study of gender bias in coreference resolution systems and correlated this bias with real-world and textual gender statistics using Winograd schema-style set of minimal pair sentences that differ only by pronoun gender.
Abstract: We present an empirical study of gender bias in coreference resolution systems. We first introduce a novel, Winograd schema-style set of minimal pair sentences that differ only by pronoun gender. With these "Winogender schemas," we evaluate and confirm systematic gender bias in three publicly-available coreference resolution systems, and correlate this bias with real-world and textual gender statistics.

306 citations

Posted Content
TL;DR: The Word Embedding Association Test is extended to measure bias in sentence encoders and mixed results including suspicious patterns of sensitivity that suggest the test’s assumptions may not hold in general.
Abstract: The Word Embedding Association Test shows that GloVe and word2vec word embeddings exhibit human-like implicit biases based on gender, race, and other social constructs (Caliskan et al., 2017). Meanwhile, research on learning reusable text representations has begun to explore sentence-level texts, with some sentence encoders seeing enthusiastic adoption. Accordingly, we extend the Word Embedding Association Test to measure bias in sentence encoders. We then test several sentence encoders, including state-of-the-art methods such as ELMo and BERT, for the social biases studied in prior work and two important biases that are difficult or impossible to test at the word level. We observe mixed results including suspicious patterns of sensitivity that suggest the test's assumptions may not hold in general. We conclude by proposing directions for future work on measuring bias in sentence encoders.

277 citations

Proceedings ArticleDOI
25 Apr 2018
TL;DR: In this paper, the authors present an empirical study of gender bias in coreference resolution systems and correlate this bias with real-world and textual gender statistics, using a set of minimal pair sentences.
Abstract: We present an empirical study of gender bias in coreference resolution systems. We first introduce a novel, Winograd schema-style set of minimal pair sentences that differ only by pronoun gender. With these “Winogender schemas,” we evaluate and confirm systematic gender bias in three publicly-available coreference resolution systems, and correlate this bias with real-world and textual gender statistics.

273 citations

Proceedings ArticleDOI
25 Mar 2019
TL;DR: The authors extended the Word Embedding Association Test to measure bias in sentence encoders and observed mixed results including suspicious patterns of sensitivity that suggest the test's assumptions may not hold in general.
Abstract: The Word Embedding Association Test shows that GloVe and word2vec word embeddings exhibit human-like implicit biases based on gender, race, and other social constructs (Caliskan et al., 2017). Meanwhile, research on learning reusable text representations has begun to explore sentence-level texts, with some sentence encoders seeing enthusiastic adoption. Accordingly, we extend the Word Embedding Association Test to measure bias in sentence encoders. We then test several sentence encoders, including state-of-the-art methods such as ELMo and BERT, for the social biases studied in prior work and two important biases that are difficult or impossible to test at the word level. We observe mixed results including suspicious patterns of sensitivity that suggest the test’s assumptions may not hold in general. We conclude by proposing directions for future work on measuring bias in sentence encoders.

211 citations


Cited by
More filters
Proceedings Article
28 May 2020
TL;DR: GPT-3 achieves strong performance on many NLP datasets, including translation, question-answering, and cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic.
Abstract: Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of thousands of examples. By contrast, humans can generally perform a new language task from only a few examples or from simple instructions - something which current NLP systems still largely struggle to do. Here we show that scaling up language models greatly improves task-agnostic, few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art fine-tuning approaches. Specifically, we train GPT-3, an autoregressive language model with 175 billion parameters, 10x more than any previous non-sparse language model, and test its performance in the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning, with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3 achieves strong performance on many NLP datasets, including translation, question-answering, and cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic. At the same time, we also identify some datasets where GPT-3's few-shot learning still struggles, as well as some datasets where GPT-3 faces methodological issues related to training on large web corpora. Finally, we find that GPT-3 can generate samples of news articles which human evaluators have difficulty distinguishing from articles written by humans. We discuss broader societal impacts of this finding and of GPT-3 in general.

10,132 citations

Proceedings ArticleDOI
14 Aug 2019
TL;DR: Sentence-BERT (SBERT), a modification of the pretrained BERT network that use siamese and triplet network structures to derive semantically meaningful sentence embeddings that can be compared using cosine-similarity is presented.
Abstract: BERT (Devlin et al., 2018) and RoBERTa (Liu et al., 2019) has set a new state-of-the-art performance on sentence-pair regression tasks like semantic textual similarity (STS). However, it requires that both sentences are fed into the network, which causes a massive computational overhead: Finding the most similar pair in a collection of 10,000 sentences requires about 50 million inference computations (~65 hours) with BERT. The construction of BERT makes it unsuitable for semantic similarity search as well as for unsupervised tasks like clustering. In this publication, we present Sentence-BERT (SBERT), a modification of the pretrained BERT network that use siamese and triplet network structures to derive semantically meaningful sentence embeddings that can be compared using cosine-similarity. This reduces the effort for finding the most similar pair from 65 hours with BERT / RoBERTa to about 5 seconds with SBERT, while maintaining the accuracy from BERT. We evaluate SBERT and SRoBERTa on common STS tasks and transfer learning tasks, where it outperforms other state-of-the-art sentence embeddings methods.

4,020 citations

Posted Content
TL;DR: The \textit{Transformers} library is an open-source library that consists of carefully engineered state-of-the art Transformer architectures under a unified API and a curated collection of pretrained models made by and available for the community.
Abstract: Recent progress in natural language processing has been driven by advances in both model architecture and model pretraining. Transformer architectures have facilitated building higher-capacity models and pretraining has made it possible to effectively utilize this capacity for a wide variety of tasks. \textit{Transformers} is an open-source library with the goal of opening up these advances to the wider machine learning community. The library consists of carefully engineered state-of-the art Transformer architectures under a unified API. Backing this library is a curated collection of pretrained models made by and available for the community. \textit{Transformers} is designed to be extensible by researchers, simple for practitioners, and fast and robust in industrial deployments. The library is available at \url{this https URL}.

3,463 citations

Proceedings ArticleDOI
01 Nov 2018
TL;DR: The gluebenchmark as mentioned in this paper is a benchmark of nine diverse NLU tasks, an auxiliary dataset for probing models for understanding of specific linguistic phenomena, and an online platform for evaluating and comparing models.
Abstract: Human ability to understand language is general, flexible, and robust. In contrast, most NLU models above the word level are designed for a specific task and struggle with out-of-domain data. If we aspire to develop models with understanding beyond the detection of superficial correspondences between inputs and outputs, then it is critical to develop a unified model that can execute a range of linguistic tasks across different domains. To facilitate research in this direction, we present the General Language Understanding Evaluation (GLUE, gluebenchmark.com): a benchmark of nine diverse NLU tasks, an auxiliary dataset for probing models for understanding of specific linguistic phenomena, and an online platform for evaluating and comparing models. For some benchmark tasks, training data is plentiful, but for others it is limited or does not match the genre of the test set. GLUE thus favors models that can represent linguistic knowledge in a way that facilitates sample-efficient learning and effective knowledge-transfer across tasks. While none of the datasets in GLUE were created from scratch for the benchmark, four of them feature privately-held test data, which is used to ensure that the benchmark is used fairly. We evaluate baselines that use ELMo (Peters et al., 2018), a powerful transfer learning technique, as well as state-of-the-art sentence representation models. The best models still achieve fairly low absolute scores. Analysis with our diagnostic dataset yields similarly weak performance over all phenomena tested, with some exceptions.

3,225 citations