scispace - formally typeset
Search or ask a question
Author

Rachel S. Edgar

Bio: Rachel S. Edgar is an academic researcher from Imperial College London. The author has contributed to research in topics: Circadian clock & Circadian rhythm. The author has an hindex of 9, co-authored 18 publications receiving 1154 citations. Previous affiliations of Rachel S. Edgar include Laboratory of Molecular Biology & University of Cambridge.

Papers
More filters
Journal ArticleDOI
24 May 2012-Nature
TL;DR: It is shown that oxidation–reduction cycles of peroxiredoxin proteins constitute a universal marker for circadian rhythms in all domains of life, by characterizing their oscillations in a variety of model organisms and exploring the interconnectivity between these metabolic cycles and transcription–translation feedback loops of the clockwork in each system.
Abstract: Cellular life emerged ∼3.7 billion years ago. With scant exception, terrestrial organisms have evolved under predictable daily cycles owing to the Earth’s rotation. The advantage conferred on organisms that anticipate such environmental cycles has driven the evolution of endogenous circadian rhythms that tune internal physiology to external conditions. The molecular phylogeny of mechanisms driving these rhythms has been difficult to dissect because identified clock genes and proteins are not conserved across the domains of life: Bacteria, Archaea and Eukaryota. Here we show that oxidation–reduction cycles of peroxiredoxin proteins constitute a universal marker for circadian rhythms in all domains of life, by characterizing their oscillations in a variety of model organisms. Furthermore, we explore the interconnectivity between these metabolic cycles and transcription–translation feedback loops of the clockwork in each system. Our results suggest an intimate co-evolution of cellular timekeeping with redox homeostatic mechanisms after the Great Oxidation Event ∼2.5 billion years ago. Daily oxidation–reduction cycles of peroxiredoxin proteins are shown to be conserved in all domains of life, including Bacteria, Archaea and Eukaryota. Most living organisms possess an endogenous circadian clock that ties their metabolism to a 24-hour day–night cycle. 'Clock genes' have been studied in many organisms and their variety has encouraged the view that each clock evolved independently. But there is a unifying factor: a non-transcriptionally based form of circadian oscillation, involving the oxidation–reduction cycles of peroxiredoxin proteins, has been identified in human red blood cells and algae. This study demonstrates that these redox cycles are conserved in all domains of life, including Bacteria, Archaea and Eukaryota, pointing to the possibility that this type of cellular timekeeping has co-evolved with redox homeostatic mechanisms across organisms for billions of years. The link may go back 2.5 billion years, to the Great Oxidation Event that consigned anaerobic metabolism to the margins of evolutionary history.

765 citations

Journal ArticleDOI
TL;DR: It is found that the time of day of host infection regulates virus progression in live mice and individual cells, and that herpes and influenza A virus infections are enhanced when host circadian rhythms are abolished by disrupting the key clock gene transcription factor Bmal1.
Abstract: Viruses are intracellular pathogens that hijack host cell machinery and resources to replicate. Rather than being constant, host physiology is rhythmic, undergoing circadian (∼24 h) oscillations in many virus-relevant pathways, but whether daily rhythms impact on viral replication is unknown. We find that the time of day of host infection regulates virus progression in live mice and individual cells. Furthermore, we demonstrate that herpes and influenza A virus infections are enhanced when host circadian rhythms are abolished by disrupting the key clock gene transcription factor Bmal1. Intracellular trafficking, biosynthetic processes, protein synthesis, and chromatin assembly all contribute to circadian regulation of virus infection. Moreover, herpesviruses differentially target components of the molecular circadian clockwork. Our work demonstrates that viruses exploit the clockwork for their own gain and that the clock represents a novel target for modulating viral replication that extends beyond any single family of these ubiquitous pathogens.

176 citations

Journal ArticleDOI
TL;DR: Circadian modification of an activating histone mark at a significant proportion of gene loci that undergo daily transcription is demonstrated, implicating widespread epigenetic modification as a key node regulated by the clockwork.
Abstract: Daily cyclical expression of thousands of genes in tissues such as the liver is orchestrated by the molecular circadian clock, the disruption of which is implicated in metabolic disorders and cancer Although we understand much about the circadian transcription factors that can switch gene expression on and off, it is still unclear how global changes in rhythmic transcription are controlled at the genomic level Here, we demonstrate circadian modification of an activating histone mark at a significant proportion of gene loci that undergo daily transcription, implicating widespread epigenetic modification as a key node regulated by the clockwork Furthermore, we identify the histone-remodelling enzyme mixed lineage leukemia (MLL)3 as a clock-controlled factor that is able to directly and indirectly modulate over a hundred epigenetically targeted circadian “output” genes in the liver Importantly, catalytic inactivation of the histone methyltransferase activity of MLL3 also severely compromises the oscillation of “core” clock gene promoters, including Bmal1, mCry1, mPer2, and Rev-erbα, suggesting that rhythmic histone methylation is vital for robust transcriptional oscillator function This highlights a pathway by which the clockwork exerts genome-wide control over transcription, which is critical for sustaining temporal programming of tissue physiology

107 citations

Journal ArticleDOI
TL;DR: The results suggest that KIR genotype and HLA ligand interaction may contribute to the genetic susceptibility of UC.
Abstract: Killer immunoglobulin-like receptors (KIRs) are expressed on natural killer cells and some T-cell subsets and produce either activation or inhibitory signals upon binding with the appropriate human leucocyte antigen (HLA) ligand on target cells. Recent genetic association studies have implicated KIR genotype in the development of several inflammatory conditions. Ulcerative colitis (UC) is an inflammatory disorder of the colonic mucosa that results from an inappropriate activation of the immune system driven by host bacterial flora. We developed a polymerase chain reaction-sequence specific primer (SSP)-based assay to genotype 194 UC patients and 216 control individuals for 14 KIR genes, the HLA-Cw ligand epitopes of the KIR2D receptors and a polymorphism of the lectin-like-activating receptor NKG2D. Initial analysis found the phenotype frequency of KIR2DL2 and -2DS2 to be significantly increased in the UC cohort (P=0.030 and 0.038, respectively). Logistic regression analysis revealed a protective effect conferred by KIR2DL3 in the presence of its ligand HLA-Cw group 1 (P=0.019). These results suggest that KIR genotype and HLA ligand interaction may contribute to the genetic susceptibility of UC.

72 citations

Journal ArticleDOI
TL;DR: It is shown that circadian rhythms in isolated human red blood cells are dependent on rhythmic transport of K+ ions, and the results suggest that in the absence of conventional transcription cycles, RBCs maintain a circadian rhythm in membrane electrophysiology through dynamic regulation of K+.
Abstract: Circadian rhythms organize many aspects of cell biology and physiology to a daily temporal program that depends on clock gene expression cycles in most mammalian cell types. However, circadian rhythms are also observed in isolated mammalian red blood cells (RBCs), which lack nuclei, suggesting the existence of post-translational cellular clock mechanisms in these cells. Here we show using electrophysiological and pharmacological approaches that human RBCs display circadian regulation of membrane conductance and cytoplasmic conductivity that depends on the cycling of cytoplasmic K+ levels. Using pharmacological intervention and ion replacement, we show that inhibition of K+ transport abolishes RBC electrophysiological rhythms. Our results suggest that in the absence of conventional transcription cycles, RBCs maintain a circadian rhythm in membrane electrophysiology through dynamic regulation of K+ transport.

62 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Genome-wide analyses of the clock transcriptional feedback loop have revealed a global circadian regulation of processes such as transcription factor occupancy, RNA polymerase II recruitment and initiation, nascent transcription, and chromatin remodelling.
Abstract: Circadian clocks are endogenous oscillators that control 24-hour physiological and behavioural processes in organisms. These cell-autonomous clocks are composed of a transcription-translation-based autoregulatory feedback loop. With the development of next-generation sequencing approaches, biochemical and genomic insights into circadian function have recently come into focus. Genome-wide analyses of the clock transcriptional feedback loop have revealed a global circadian regulation of processes such as transcription factor occupancy, RNA polymerase II recruitment and initiation, nascent transcription, and chromatin remodelling. The genomic targets of circadian clocks are pervasive and are intimately linked to the regulation of metabolism, cell growth and physiology.

1,538 citations

Journal ArticleDOI
TL;DR: The sources of ROS within cells and what is known regarding how intracellular oxidant levels are regulated are discussed, with the recent observations that reduction–oxidation (redox)-dependent regulation has a crucial role in an ever-widening range of biological activities.
Abstract: Reactive oxygen species (ROS), which were originally characterized in terms of their harmful effects on cells and invading microorganisms, are increasingly implicated in various cell fate decisions and signal transduction pathways. The mechanism involved in ROS-dependent signalling involves the reversible oxidation and reduction of specific amino acids, with crucial reactive Cys residues being the most frequent target. In this Review, we discuss the sources of ROS within cells and what is known regarding how intracellular oxidant levels are regulated. We further discuss the recent observations that reduction-oxidation (redox)-dependent regulation has a crucial role in an ever-widening range of biological activities - from immune function to stem cell self-renewal, and from tumorigenesis to ageing.

1,515 citations

Journal ArticleDOI
TL;DR: The present overview focuses on recent progress on metabolic sources and sinks of H 2O2 and on the role of H2O2 in redox signaling under physiological conditions, denoted as oxidative eustress.
Abstract: Hydrogen peroxide emerged as major redox metabolite operative in redox sensing, signaling and redox regulation. Generation, transport and capture of H2O2 in biological settings as well as their biological consequences can now be addressed. The present overview focuses on recent progress on metabolic sources and sinks of H2O2 and on the role of H2O2 in redox signaling under physiological conditions (1–10 nM), denoted as oxidative eustress. Higher concentrations lead to adaptive stress responses via master switches such as Nrf2/Keap1 or NF-κB. Supraphysiological concentrations of H2O2 (>100 nM) lead to damage of biomolecules, denoted as oxidative distress. Three questions are addressed: How can H2O2 be assayed in the biological setting? What are the metabolic sources and sinks of H2O2? What is the role of H2O2 in redox signaling and oxidative stress?

1,242 citations

Journal ArticleDOI
TL;DR: Sleep appears to have not only a short‐term, use‐dependent function; it also serves to enforce rest and fasting, thereby supporting the optimization of metabolic processes at the appropriate phase of the 24‐h cycle.
Abstract: In the last three decades the two-process model of sleep regulation has served as a major conceptual framework in sleep research. It has been applied widely in studies on fatigue and performance and to dissect individual differences in sleep regulation. The model posits that a homeostatic process (Process S) interacts with a process controlled by the circadian pacemaker (Process C), with time-courses derived from physiological and behavioural variables. The model simulates successfully the timing and intensity of sleep in diverse experimental protocols. Electrophysiological recordings from the suprachiasmatic nuclei (SCN) suggest that S and C interact continuously. Oscillators outside the SCN that are linked to energy metabolism are evident in SCN-lesioned arrhythmic animals subjected to restricted feeding or methamphetamine administration, as well as in human subjects during internal desynchronization. In intact animals these peripheral oscillators may dissociate from the central pacemaker rhythm. A sleep/fast and wake/feed phase segregate antagonistic anabolic and catabolic metabolic processes in peripheral tissues. A deficiency of Process S was proposed to account for both depressive sleep disturbances and the antidepressant effect of sleep deprivation. The model supported the development of novel non-pharmacological treatment paradigms in psychiatry, based on manipulating circadian phase, sleep and light exposure. In conclusion, the model remains conceptually useful for promoting the integration of sleep and circadian rhythm research. Sleep appears to have not only a short-term, use-dependent function; it also serves to enforce rest and fasting, thereby supporting the optimization of metabolic processes at the appropriate phase of the 24-h cycle.

986 citations

Journal ArticleDOI
TL;DR: The role of oxidative stress in synaptic dysfunction in AD, innovative therapeutic strategies evolved based on a better understanding of the complexity of molecular mechanisms of AD, and the dual role ROS play in health and disease are discussed.
Abstract: Alzheimer's disease (AD) is a devastating neurodegenerative disorder without a cure. Most AD cases are sporadic where age represents the greatest risk factor. Lack of understanding of the disease mechanism hinders the development of efficacious therapeutic approaches. The loss of synapses in the affected brain regions correlates best with cognitive impairment in AD patients and has been considered as the early mechanism that precedes neuronal loss. Oxidative stress has been recognized as a contributing factor in aging and in the progression of multiple neurodegenerative diseases including AD. Increased production of reactive oxygen species (ROS) associated with age- and disease-dependent loss of mitochondrial function, altered metal homeostasis, and reduced antioxidant defense directly affect synaptic activity and neurotransmission in neurons leading to cognitive dysfunction. In addition, molecular targets affected by ROS include nuclear and mitochondrial DNA, lipids, proteins, calcium homeostasis, mitochondrial dynamics and function, cellular architecture, receptor trafficking and endocytosis, and energy homeostasis. Abnormal cellular metabolism in turn could affect the production and accumulation of amyloid-β (Aβ) and hyperphosphorylated Tau protein, which independently could exacerbate mitochondrial dysfunction and ROS production, thereby contributing to a vicious cycle. While mounting evidence implicates ROS in the AD etiology, clinical trials with antioxidant therapies have not produced consistent results. In this review, we will discuss the role of oxidative stress in synaptic dysfunction in AD, innovative therapeutic strategies evolved based on a better understanding of the complexity of molecular mechanisms of AD, and the dual role ROS play in health and disease.

967 citations