scispace - formally typeset
Search or ask a question
Author

Rachid M'Saoubi

Bio: Rachid M'Saoubi is an academic researcher from Lund University. The author has contributed to research in topics: Machining & Surface integrity. The author has an hindex of 37, co-authored 130 publications receiving 5353 citations. Previous affiliations of Rachid M'Saoubi include Arts et Métiers ParisTech & Swedish Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: A three-year study by the CIRP's Collaborative Working Group on Surface Integrity and Functional Performance of Components as discussed by the authors reported recent progress in experimental and theoretical investigations on surface integrity in material removal processes.

769 citations

Journal ArticleDOI
TL;DR: An overview of the recent advances in high performance cutting of aerospace alloys and composite currently used in aeroengine and aerostructure applications is presented in this paper, focusing on the role of hybrid machining processes and cooling strategies (MQL, high pressure coolant, cryogenic) on machining performance.
Abstract: This paper presents an overview of the recent advances in high performance cutting of aerospace alloys and composite currently used in aeroengine and aerostructure applications. Progress in cutting tool development and its effect on tool wear and surface integrity characteristics of difficult to machine materials such as nickel based alloys, titanium and composites is presented. Further, advances in cutting technologies are discussed, focusing on the role of hybrid machining processes and cooling strategies (MQL, high pressure coolant, cryogenic) on machining performance. Finally, industrial perspectives are provided in the context of machining specific components where future challenges are discussed.

388 citations

Journal ArticleDOI
TL;DR: In this article, a review of widely used temperature measurement methods and how they can be applied to temperature monitoring during material removal is presented, using criteria critical in measuring material removal, and the results presented in guide-format for participants in this field of work.

345 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of five different sets of material constants of the J-C constitutive equation in finite element modelling of orthogonal cutting of AISI 316L on the experimental and predicted cutting forces, chip morphology, temperature distributions and residual stresses are investigated.
Abstract: In literature, five different sets of work material constants used in the Johnson–Cook's (J–C) constitutive equation are implemented in a numerical model to describe the behaviour of AISI 316L steel. The aim of this research is to study the effects of five different sets of material constants of the J–C constitutive equation in finite-element modelling of orthogonal cutting of AISI 316L on the experimental and predicted cutting forces, chip morphology, temperature distributions and residual stresses. Several experimental equipments were used to estimate the experimental results, such as piezoelectric dynamometer for cutting forces measurements, thermal imaging system for temperature measurements and X-ray diffraction technique for residual stresses determination on the machined surfaces; while an elastic–viscoplastic FEM formulation was implemented to predict the local and global variables involved in this research. It has been observed that all the considered process output and, in particular the residual stresses are very sensitive to the J–C's material constants.

340 citations

Journal ArticleDOI
TL;DR: Coated tools constitute the majority of the tools applied in material removal processes, rendering the employment of uncoated ones as an exception as discussed by the authors. And numerous material and manufacturing-engineers have joint their expertise, aiming at developing coatings meeting the needs for processing the most difficult-to-cut materials at the most extreme cutting conditions.
Abstract: Coated tools constitute the majority of the tools applied in material removal processes, rendering the employment of uncoated ones as an exception. A broad growing market of coated cutting tools has been developed. Moreover, numerous material- and manufacturing-engineers have joint their expertise, aiming at developing coatings meeting the needs for processing the most difficult-to-cut materials at the most extreme cutting conditions. The emerging of new workpiece, tool and film materials, the evolution of sophisticated coatings’ characterization methods and the continuous need for higher productivity rates, maintain vivid the industrial and scientific interest for further advancing this field.

328 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the past contributions of CIRP in these areas are reviewed and an up-to-date comprehensive survey of sensor technologies, signal processing, and decision making strategies for process monitoring is provided.

1,074 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide an overview of machining induced surface integrity in titanium and nickel alloys and conclude that further modeling studies are needed to create predictive physics-based models that is in good agreement with reliable experiments.
Abstract: Titanium and nickel alloys represent a significant metal portion of the aircraft structural and engine components. When these critical structural components in aerospace industry are manufactured with the objective to reach high reliability levels, surface integrity is one of the most relevant parameters used for evaluating the quality of finish machined surfaces. The residual stresses and surface alteration (white etch layer and depth of work hardening) induced by machining of titanium alloys and nickel-based alloys are very critical due to safety and sustainability concerns. This review paper provides an overview of machining induced surface integrity in titanium and nickel alloys. There are many different types of surface integrity problems reported in literature, and among these, residual stresses, white layer and work hardening layers, as well as microstructural alterations can be studied in order to improve surface qualities of end products. Many parameters affect the surface quality of workpieces, and cutting speed, feed rate, depth of cut, tool geometry and preparation, tool wear, and workpiece properties are among the most important ones worth to investigate. Experimental and empirical studies as well as analytical and Finite Element modeling based approaches are offered in order to better understand machining induced surface integrity. In the current state-of-the-art however, a comprehensive and systematic modeling approach based on the process physics and applicable to the industrial processes is still missing. It is concluded that further modeling studies are needed to create predictive physics-based models that is in good agreement with reliable experiments, while explaining the effects of many parameters, for machining of titanium alloys and nickel-based alloys.

986 citations

Journal ArticleDOI
TL;DR: A three-year study by the CIRP's Collaborative Working Group on Surface Integrity and Functional Performance of Components as discussed by the authors reported recent progress in experimental and theoretical investigations on surface integrity in material removal processes.

769 citations

Journal ArticleDOI
TL;DR: In this article, the state-of-the-art in predictive performance models for machining operations is presented, and a critical assessment of the relevant modelling techniques and their applicability and/or limitations for the prediction of the complex machining operation performed in industry.

622 citations