scispace - formally typeset
Search or ask a question
Author

Radhakant Padhi

Bio: Radhakant Padhi is an academic researcher from Indian Institute of Science. The author has contributed to research in topics: Optimal control & Adaptive control. The author has an hindex of 23, co-authored 229 publications receiving 2322 citations. Previous affiliations of Radhakant Padhi include University of Pretoria & Missouri University of Science and Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: An improvement to the AC architecture, called the "Single Network Adaptive Critic (SNAC)," is presented, which is applicable to a wide class of nonlinear systems where the optimal control (stationary) equation can be explicitly expressed in terms of the state and costate variables.
Abstract: Even though dynamic programming offers an optimal control solution in a state feedback form, the method is overwhelmed by computational and storage requirements. Approximate dynamic programming implemented with an Adaptive Critic (AC) neural network structure has evolved as a powerful alternative technique that obviates the need for excessive computations and storage requirements in solving optimal control problems. In this paper, an improvement to the AC architecture, called the ''Single Network Adaptive Critic (SNAC)'' is presented. This approach is applicable to a wide class of nonlinear systems where the optimal control (stationary) equation can be explicitly expressed in terms of the state and costate variables. The selection of this terminology is guided by the fact that it eliminates the use of one neural network (namely the action network) that is part of a typical dual network AC setup. As a consequence, the SNAC architecture offers three potential advantages: a simpler architecture, lesser computational load and elimination of the approximation error associated with the eliminated network. In order to demonstrate these benefits and the control synthesis technique using SNAC, two problems have been solved with the AC and SNAC approaches and their computational performances are compared. One of these problems is a real-life Micro-Electro-Mechanical-system (MEMS) problem, which demonstrates that the SNAC technique is applicable to complex engineering systems.

193 citations

Journal ArticleDOI
TL;DR: In this paper, a nonlinear suboptimal guidance law is presented for successful interception of ground targets by air-launched missiles and guided munitions, which accurately satisfies terminal impact angle constraints in both azimuth as well as elevation simultaneously.
Abstract: A nonlinear suboptimal guidance law is presented in this paper for successful interception of ground targets by air-launched missiles and guided munitions. The main feature of this guidance law is that it accurately satisfies terminal impact angle constraints in both azimuth as well as elevation simultaneously. In addition, it is capable of hitting the target with high accuracy as well as minimizing the lateral acceleration demand. The guidance law is synthesized using recently developed model predictive static programming (MPSP). Performance of the proposed MPSP guidance is demonstrated using three-dimensional (3-D) nonlinear engagement dynamics by considering stationary, moving, and maneuvering targets. Effectiveness of the proposed guidance has also been verified by considering first. order autopilot lag as well as assuming inaccurate information about target maneuvers. Multiple munitions engagement results are presented as well. Moreover, comparison studies with respect to an augmented proportional navigation guidance (which does not impose impact angle constraints) as well as an explicit linear optimal guidance (which imposes the same impact angle constraints in 3-D) lead to the conclusion that the proposed MPSP guidance is superior to both. A large number of randomized simulation studies show that it also has a larger capture region.

144 citations

Journal ArticleDOI
TL;DR: An attempt has been made to give a brief yet reasonably representative account of many of these developments in a chronological order on distributed parameter systems in a wide spectrum to make it accessible to a wide audience.
Abstract: Control systems arising in many engineering fields are often of distributed parameter type, which are modeled by partial differential equations. Decades of research have lead to a great deal of literature on distributed parameter systems scattered in a wide spectrum. Extensions of popular finite-dimensional techniques to infinite-dimensional systems as well as innovative infinite-dimensional specific control design approaches have been proposed. A comprehensive account of all the developments would probably require several volumes and is perhaps a very difficult task. In this paper, however, an attempt has been made to give a brief yet reasonably representative account of many of these developments in a chronological order. To make it accessible to a wide audience, mathematical descriptions have been completely avoided with the assumption that an interested reader can always find the mathematical details in the relevant references.

106 citations

01 Feb 2009
TL;DR: In this article, the authors combine the philosophies of nonlinear model predictive control and approximate dynamic programming to design a suboptimal control design technique named as model predictive static programming (MPSP), which is applicable for finite-horizon nonlinear problems with terminal constraints.
Abstract: Combining the philosophies of nonlinear model predictive control and approximate dynamic programming, a new suboptimal control design technique is presented in this paper, named as model predictive static programming (MPSP), which is applicable for finite-horizon nonlinear problems with terminal constraints. This technique is computationally efficient, and hence, can possibly be implemented online. The effectiveness of the proposed method is demonstrated by designing an ascent phase guidance scheme for a ballistic missile propelled by solid motors. A comparison study with a conventional gradient method shows that the MPSP solution is quite close to the optimal solution.

93 citations

Journal ArticleDOI
TL;DR: In this paper, a generalized model predictive static programming technique is presented for rapidly solving a class of finite-horizon nonlinear optimal control problems with hard terminal constraints, such as the double integrator problem.
Abstract: A new generalized model predictive static programming technique is presented for rapidly solving a class of finite-horizon nonlinear optimal control problems with hard terminal constraints. Two key features for its high computational efficiency include one-time backward integration of a small-dimensional weighting matrix dynamics, followed bya static optimization formulation that requires only a static Lagrange multiplier to update the control history. It turns out that under Euler integration and rectangular approximation of finite integrals it is equivalent to the existing model predictive static programming technique. In addition to the benchmark double integrator problem, usefulness of the proposed technique is demonstrated by solving a three-dimensional angle-constrained guidance problem for an air-to-ground missile, which demands that the missile must meet constraints on both azimuth and elevation angles at the impact point in addition to achieving near-zero miss distance, while minimizing the lateral acceleration demand throughout its flight path. Simulation studies include maneuvering ground targets along with a first-order autopilot lag. Comparison studies with classical augmented proportional navigation guidance and modern general explicit guidance lead to the conclusion that the proposed guidance is superior to both and has a larger capture region as well.

81 citations


Cited by
More filters
Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

Journal ArticleDOI
TL;DR: The equations of motion of the rendezvous satellite in a relative coordinate system are derived and used to compute a final injection velocity which would effect collision after a time r.
Abstract: This paper assumes a requirement for an unmanned multiunit satellite to be assembled in orbit. The requirement to be met is to bring the satellites together so tha t they do not collide but actually rendezvous. The equations of motion of the rendezvous satellite in a relative coordinate system are derived and used to compute a final injection velocity which would effect collision after a time r. The velocity is corrected periodically by a command guidance system and just before impact retrothrust is applied. A terminal infrared homing sj^stem is required to actually accomplish physical contact and joining of the satellites. The first satellite placed in orbit is the "control satellite" and controls all the satellites to be assembled and contains the ccmputer, command guidance equipment, precision orientation equipment, and other features necessary to effect rendezvous. The succeeding satellites contain a propulsion system, a rough at t i tude control system, and a command receiver plus whatever scientific equipment they carry to perform their basic mission. This paper presents the following:

1,686 citations

Journal ArticleDOI
TL;DR: This work describes mathematical formulations for reinforcement learning and a practical implementation method known as adaptive dynamic programming that give insight into the design of controllers for man-made engineered systems that both learn and exhibit optimal behavior.
Abstract: Living organisms learn by acting on their environment, observing the resulting reward stimulus, and adjusting their actions accordingly to improve the reward. This action-based or reinforcement learning can capture notions of optimal behavior occurring in natural systems. We describe mathematical formulations for reinforcement learning and a practical implementation method known as adaptive dynamic programming. These give us insight into the design of controllers for man-made engineered systems that both learn and exhibit optimal behavior.

1,163 citations

Book
26 Aug 2021
TL;DR: The use of unmanned aerial vehicles (UAVs) is growing rapidly across many civil application domains, including real-time monitoring, providing wireless coverage, remote sensing, search and rescue, delivery of goods, security and surveillance, precision agriculture, and civil infrastructure inspection.
Abstract: The use of unmanned aerial vehicles (UAVs) is growing rapidly across many civil application domains, including real-time monitoring, providing wireless coverage, remote sensing, search and rescue, delivery of goods, security and surveillance, precision agriculture, and civil infrastructure inspection. Smart UAVs are the next big revolution in the UAV technology promising to provide new opportunities in different applications, especially in civil infrastructure in terms of reduced risks and lower cost. Civil infrastructure is expected to dominate more than $45 Billion market value of UAV usage. In this paper, we present UAV civil applications and their challenges. We also discuss the current research trends and provide future insights for potential UAV uses. Furthermore, we present the key challenges for UAV civil applications, including charging challenges, collision avoidance and swarming challenges, and networking and security-related challenges. Based on our review of the recent literature, we discuss open research challenges and draw high-level insights on how these challenges might be approached.

901 citations

BookDOI
01 Jan 2004
TL;DR: This chapter discusses reinforcement learning in large, high-dimensional state spaces, model-based adaptive critic designs, and applications of approximate dynamic programming in power systems control.
Abstract: Foreword. 1. ADP: goals, opportunities and principles. Part I: Overview. 2. Reinforcement learning and its relationship to supervised learning. 3. Model-based adaptive critic designs. 4. Guidance in the use of adaptive critics for control. 5. Direct neural dynamic programming. 6. The linear programming approach to approximate dynamic programming. 7. Reinforcement learning in large, high-dimensional state spaces. 8. Hierarchical decision making. Part II: Technical advances. 9. Improved temporal difference methods with linear function approximation. 10. Approximate dynamic programming for high-dimensional resource allocation problems. 11. Hierarchical approaches to concurrency, multiagency, and partial observability. 12. Learning and optimization - from a system theoretic perspective. 13. Robust reinforcement learning using integral-quadratic constraints. 14. Supervised actor-critic reinforcement learning. 15. BPTT and DAC - a common framework for comparison. Part III: Applications. 16. Near-optimal control via reinforcement learning. 17. Multiobjective control problems by reinforcement learning. 18. Adaptive critic based neural network for control-constrained agile missile. 19. Applications of approximate dynamic programming in power systems control. 20. Robust reinforcement learning for heating, ventilation, and air conditioning control of buildings. 21. Helicopter flight control using direct neural dynamic programming. 22. Toward dynamic stochastic optimal power flow. 23. Control, optimization, security, and self-healing of benchmark power systems.

780 citations