scispace - formally typeset
Search or ask a question
Author

Radhakrishnan Mahadevan

Bio: Radhakrishnan Mahadevan is an academic researcher from University of Toronto. The author has contributed to research in topics: Metabolic network & Flux balance analysis. The author has an hindex of 46, co-authored 165 publications receiving 7760 citations. Previous affiliations of Radhakrishnan Mahadevan include Genomatica & University of California, Los Angeles.


Papers
More filters
Journal ArticleDOI
TL;DR: It was observed that calculations using QP-based methods can show significant variation in growth rate if the flux variability among alternate optima is high, and the variability inherent in metabolic flux distributions is illustrated.

1,187 citations

Journal ArticleDOI
TL;DR: In this article, two different formulations of dynamic flux balance analysis were used to simulate the batch growth of E. coli on glucose, and the predictions were found to qualitatively match experimental data.

839 citations

Journal ArticleDOI
TL;DR: In this article, a genome-scale reconstruction of Bacillus subtilis metabolism and its iterative development based on the combination of genomic, biochemical, and physiological information and high-throughput phenotyping experiments is presented.

384 citations

01 Jan 2007
TL;DR: The in silico model can be used to obtain experimentally verifiable hypothesis on the metabolic functions of various genes and is found to be consistent with experimental observations in 720 of 766 cases evaluated.
Abstract: In this report, a genome-scale reconstruction of Bacillus subtilis metabolism and its iterative development based on the combination of genomic, biochemical, and physiological information and high-throughput phenotyping experiments is presented. The initial reconstruction was converted into an in silico model and expanded in a four-step iterative fashion. First, network gap analysis was used to identify 48 missing reactions that are needed for growth but were not found in the genome annotation. Second, the computed growth rates under aerobic conditions were compared with high-throughput phenotypic screen data, and the initial in silico model could predict the outcomes qualitatively in 140 of 271 cases considered. Detailed analysis of the incorrect predictions resulted in the addition of 75 reactions to the initial reconstruction, and 200 of 271 cases were correctly computed. Third, in silico computations of the growth phenotypes of knock-out strains were found to be consistent with experimental observations in 720 of 766 cases evaluated. Fourth, the integrated analysis of the large-scale substrate utilization and gene essentiality data with the genomescale metabolic model revealed the requirement of 80 specific enzymes (transport, 53; intracellular reactions, 27) that were not in the genome annotation. Subsequent sequence analysis resulted in the identification of genes that could be putatively assigned to 13 intracellular enzymes. The final reconstruction accounted for 844 open reading frames and consisted of 1020 metabolic reactions and 988 metabolites. Hence, the in silico model can be used to obtain experimentally verifiable hypothesis on the metabolic functions of various genes. Bacillus subtilis has been the organism of choice for the production of several important industrial products, including antibiotics, enzymes, nucleosides, and vitamins. Several aspects of the biochemistry, genetics, and physiology of B. subtilis have been studied extensively making B. subtilis the best characterized prokaryote second only to Escherichia coli (1, 2). In addition various “-omics” data sets such as transcriptomic (3), proteomic (4), and metabolomic (5) are available for B. subtilis. This wealth of experimental data enables the development of a genome-scale metabolic in silico model that can be used not only for quantitative interpretation and structured integration of such extensive data sets but also as a tool for hypothesis generation and engineering of B. subtilis metabolism. To date, constraint-based reconstruction and analysis (COBRA) 4 of cellular metabolism has been employed successfully to develop organism-specific genome-scale in silico models that have enabled numerous applications (6). Unlike other

365 citations

Journal ArticleDOI
TL;DR: The results demonstrate that iterative modeling coupled with experimentation can accelerate the understanding of the physiology of poorly studied but environmentally relevant organisms and may help optimize their practical applications.
Abstract: Geobacter sulfurreducens is a well-studied representative of the Geobacteraceae, which play a critical role in organic matter oxidation coupled to Fe(III) reduction, bioremediation of groundwater contaminated with organics or metals, and electricity production from waste organic matter. In order to investigate G. sulfurreducens central metabolism and electron transport, a metabolic model which integrated genome-based predictions with available genetic and physiological data was developed via the constraint-based modeling approach. Evaluation of the rates of proton production and consumption in the extracellular and cytoplasmic compartments revealed that energy conservation with extracellular electron acceptors, such as Fe(III), was limited relative to that associated with intracellular acceptors. This limitation was attributed to lack of cytoplasmic proton consumption during reduction of extracellular electron acceptors. Model-based analysis of the metabolic cost of producing an extracellular electron shuttle to promote electron transfer to insoluble Fe(III) oxides demonstrated why Geobacter species, which do not produce shuttles, have an energetic advantage over shuttle-producing Fe(III) reducers in subsurface environments. In silico analysis also revealed that the metabolic network of G. sulfurreducens could synthesize amino acids more efficiently than that of Escherichia coli due to the presence of a pyruvate-ferredoxin oxidoreductase, which catalyzes synthesis of pyruvate from acetate and carbon dioxide in a single step. In silico phenotypic analysis of deletion mutants demonstrated the capability of the model to explore the flexibility of G. sulfurreducens central metabolism and correctly predict mutant phenotypes. These results demonstrate that iterative modeling coupled with experimentation can accelerate the understanding of the physiology of poorly studied but environmentally relevant organisms and may help optimize their practical applications.

317 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This primer covers the theoretical basis of the approach, several practical examples and a software toolbox for performing the calculations.
Abstract: Flux balance analysis is a mathematical approach for analyzing the flow of metabolites through a metabolic network. This primer covers the theoretical basis of the approach, several practical examples and a software toolbox for performing the calculations.

3,229 citations

Journal Article
TL;DR: FastTree as mentioned in this paper uses sequence profiles of internal nodes in the tree to implement neighbor-joining and uses heuristics to quickly identify candidate joins, then uses nearest-neighbor interchanges to reduce the length of the tree.
Abstract: Gene families are growing rapidly, but standard methods for inferring phylogenies do not scale to alignments with over 10,000 sequences. We present FastTree, a method for constructing large phylogenies and for estimating their reliability. Instead of storing a distance matrix, FastTree stores sequence profiles of internal nodes in the tree. FastTree uses these profiles to implement neighbor-joining and uses heuristics to quickly identify candidate joins. FastTree then uses nearest-neighbor interchanges to reduce the length of the tree. For an alignment with N sequences, L sites, and a different characters, a distance matrix requires O(N^2) space and O(N^2 L) time, but FastTree requires just O( NLa + N sqrt(N) ) memory and O( N sqrt(N) log(N) L a ) time. To estimate the tree's reliability, FastTree uses local bootstrapping, which gives another 100-fold speedup over a distance matrix. For example, FastTree computed a tree and support values for 158,022 distinct 16S ribosomal RNAs in 17 hours and 2.4 gigabytes of memory. Just computing pairwise Jukes-Cantor distances and storing them, without inferring a tree or bootstrapping, would require 17 hours and 50 gigabytes of memory. In simulations, FastTree was slightly more accurate than neighbor joining, BIONJ, or FastME; on genuine alignments, FastTree's topologies had higher likelihoods. FastTree is available at http://microbesonline.org/fasttree.

2,436 citations

Journal ArticleDOI
TL;DR: This Progress article explores the underlying reasons for exocellular electron transfer, including cellular respiration and possible cell–cell communication, to understand bacterial versatility in mechanisms used for current generation.
Abstract: The use of microbial fuel cells to generate electrical current is increasingly being seen as a viable source of renewable energy production In this Progress article, Bruce Logan highlights recent advances in our understanding of the mechanisms used by exoelectrogenic bacteria to generate electrical current and the important factors to consider in microbial fuel cell design There has been an increase in recent years in the number of reports of microorganisms that can generate electrical current in microbial fuel cells Although many new strains have been identified, few strains individually produce power densities as high as strains from mixed communities Enriched anodic biofilms have generated power densities as high as 69 W per m2 (projected anode area), and therefore are approaching theoretical limits To understand bacterial versatility in mechanisms used for current generation, this Progress article explores the underlying reasons for exocellular electron transfer, including cellular respiration and possible cell–cell communication

2,045 citations