scispace - formally typeset
Search or ask a question
Author

Radhey S. Gupta

Bio: Radhey S. Gupta is an academic researcher from McMaster University. The author has contributed to research in topics: Chinese hamster ovary cell & Conserved signature indels. The author has an hindex of 71, co-authored 377 publications receiving 18078 citations. Previous affiliations of Radhey S. Gupta include Austrian Academy of Sciences & McMaster University Medical Centre.


Papers
More filters
Journal ArticleDOI
TL;DR: Evidence from indels supports the view that the archaebacteria probably evolved from gram-positive bacteria and suggests that this evolution occurred in response to antibiotic selection pressures, and an alternative model of microbial evolution based on the use of indels of conserved proteins and the morphological features of prokaryotic organisms is proposed.
Abstract: The presence of shared conserved insertion or deletions (indels) in protein sequences is a special type of signature sequence that shows considerable promise for phylogenetic inference. An alternative model of microbial evolution based on the use of indels of conserved proteins and the morphological features of prokaryotic organisms is proposed. In this model, extant archaebacteria and gram-positive bacteria, which have a simple, single-layered cell wall structure, are termed monoderm prokaryotes. They are believed to be descended from the most primitive organisms. Evidence from indels supports the view that the archaebacteria probably evolved from gram-positive bacteria, and I suggest that this evolution occurred in response to antibiotic selection pressures. Evidence is presented that diderm prokaryotes (i.e., gram-negative bacteria), which have a bilayered cell wall, are derived from monoderm prokaryotes. Signature sequences in different proteins provide a means to define a number of different taxa within prokaryotes (namely, low G+C and high G+C gram-positive, Deinococcus-Thermus, cyanobacteria, chlamydia-cytophaga related, and two different groups of Proteobacteria) and to indicate how they evolved from a common ancestor. Based on phylogenetic information from indels in different protein sequences, it is hypothesized that all eukaryotes, including amitochondriate and aplastidic organisms, received major gene contributions from both an archaebacterium and a gram-negative eubacterium. In this model, the ancestral eukaryotic cell is a chimera that resulted from a unique fusion event between the two separate groups of prokaryotes followed by integration of their genomes.

596 citations

Journal ArticleDOI
TL;DR: The work presented here represents the first comprehensive, genome-scale taxonomic analysis of the entirety of the order 'Enterobacteriales', and a proposal is made here for the order Enterobacterales ord. nov. which consists of seven families.
Abstract: Understanding of the phylogeny and interrelationships of the genera within the order 'Enterobacteriales' has proven difficult using the 16S rRNA gene and other single-gene or limited multi-gene approaches. In this work, we have completed comprehensive comparative genomic analyses of the members of the order 'Enterobacteriales' which includes phylogenetic reconstructions based on 1548 core proteins, 53 ribosomal proteins and four multilocus sequence analysis proteins, as well as examining the overall genome similarity amongst the members of this order. The results of these analyses all support the existence of seven distinct monophyletic groups of genera within the order 'Enterobacteriales'. In parallel, our analyses of protein sequences from the 'Enterobacteriales' genomes have identified numerous molecular characteristics in the forms of conserved signature insertions/deletions, which are specifically shared by the members of the identified clades and independently support their monophyly and distinctness. Many of these groupings, either in part or in whole, have been recognized in previous evolutionary studies, but have not been consistently resolved as monophyletic entities in 16S rRNA gene trees. The work presented here represents the first comprehensive, genome-scale taxonomic analysis of the entirety of the order 'Enterobacteriales'. On the basis of phylogenetic analyses and the numerous identified conserved molecular characteristics, which clearly distinguish members of the order 'Enterobacteriales' and the seven reported clades within this order, a proposal is made here for the order Enterobacterales ord. nov. which consists of seven families: Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov.

580 citations

Journal ArticleDOI
S Jindal1, Anil K. Dudani1, Bhupinder Singh1, C B Harley1, Radhey S. Gupta1 
TL;DR: The observed high degree of homology between human P1 and mycobacterial antigen also suggests the possible involvement of this protein in certain autoimmune diseases.
Abstract: The complete cDNA for a human mitochondrial protein designated P1, which was previously identified as a microtubule-related protein, has been cloned and sequenced. The deduced amino acid sequence of P1 shows strong homology (40 to 50% identical residues and an additional 20% conservative replacements) to the 65-kilodalton major antigen of mycobacteria, to the GroEL protein of Escherichia coli, and to the ribulose 1,5-bisphosphate carboxylase-oxygenase (rubisco) subunit binding protein of plant chloroplasts. Similar to the case with the latter two proteins, which have been shown to act as chaperonins in the posttranslational assembly of oligomeric protein structures, it is suggested that P1 may play a similar role in mammalian cells. The observed high degree of homology between human P1 and mycobacterial antigen also suggests the possible involvement of this protein in certain autoimmune diseases.

518 citations

Journal ArticleDOI
TL;DR: Based upon the results of phylogenetic analyses, the identified CSIs and the pathogenicity profile of Burkholderia species, the emended genus Burk holderia will correspond to the Clade I and it will contain only the clinically relevant and phytopathogenic BurkHolderia species.
Abstract: The genus Burkholderia contains large number of diverse species which include many clinically important organisms, phytopathogens, as well as environmental species. However, currently, there is a paucity of biochemical or molecular characteristics which can reliably distinguish different groups of Burkholderia species. We report here the results of detailed phylogenetic and comparative genomic analyses of 45 sequenced species of the genus Burkholderia. In phylogenetic trees based upon concatenated sequences for 21 conserved proteins as well as 16S rRNA gene sequence based trees, members of the genus Burkholderia grouped into two major clades. Within these main clades a number of smaller clades including those corresponding to the clinically important Burkholderia cepacia complex (BCC) and the Burkholderia pseudomallei groups were also clearly distinguished. Our comparative analysis of protein sequences from Burkholderia spp. has identified 42 highly specific molecular markers in the form of conserved sequence indels (CSIs) that are uniquely found in a number of well-defined groups of Burkholderia spp. Six of these CSIs are specific for a group of Burkholderia spp. (referred to as Clade I in this work) which contains all clinically relevant members of the genus (viz. the BCC and the B. pseudomallei group) as well as the phytopathogenic Burkholderia spp. The second main clade (Clade II), which is composed of environmental Burkholderia species, is also distinguished by 2 identified CSIs that are specific for this group. Additionally, our work has also identified multiple CSIs that serve to clearly demarcate a number of smaller groups of Burkholderia spp. including 3 CSIs that are specific for the B. cepacia complex, 4 CSIs that are uniquely found in the B. pseudomallei group, 5 CSIs that are specific for the phytopathogenic Burkholderia spp. and 22 other CSI that distinguish two groups within Clade II. The described molecular markers provide highly specific means for the demarcation of different groups of Burkholderia spp. and they also offer novel and useful targets for the development of diagnostic assays for the clinically important members of the BCC or the pseudomallei groups. Based upon the results of phylogenetic analyses, the identified CSIs and the pathogenicity profile of Burkholderia species, we are proposing a division of the genus Burkholderia into two genera. In this new proposal, the emended genus Burkholderia will correspond to the Clade I and it will contain only the clinically relevant and phytopathogenic Burkholderia species. All other Burkholderia spp., which are primarily environmental, will be transferred to a new genus Paraburkholderia gen. nov.

358 citations

Journal ArticleDOI
TL;DR: Comprehensive phylogenomics and comparative genomic analyses on 150 genomes of Mycobacterium species and numerous identified molecular signatures consistently support the division of known mycobacterial species into the five described clades, which are designated as the “Tuberculosis-Simiae,” “Terrae,’ “Triviale” and “Abscessus-Chelonae” clades.
Abstract: The genus Mycobacterium contains 188 species including several major human pathogens as well as numerous other environmental species. We report here comprehensive phylogenomics and comparative genomic analyses on 150 genomes of Mycobacterium species to understand their interrelationships. Phylogenetic trees were constructed for the 150 species based on 1941 core proteins for the genus Mycobacterium, 136 core proteins for the phylum Actinobacteria and 8 other conserved proteins. Additionally, the overall genome similarity amongst the Mycobacterium species was determined based on average amino acid identity of the conserved protein families. The results from these analyses consistently support the existence of five distinct monophyletic groups within the genus Mycobacterium at the highest level, which are designated as the "Tuberculosis-Simiae," "Terrae," "Triviale," "Fortuitum-Vaccae," and "Abscessus-Chelonae" clades. Some of these clades have also been observed in earlier phylogenetic studies. Of these clades, the "Abscessus-Chelonae" clade forms the deepest branching lineage and does not form a monophyletic grouping with the "Fortuitum-Vaccae" clade of fast-growing species. In parallel, our comparative analyses of proteins from mycobacterial genomes have identified 172 molecular signatures in the form of conserved signature indels and conserved signature proteins, which are uniquely shared by either all Mycobacterium species or by members of the five identified clades. The identified molecular signatures (or synapomorphies) provide strong independent evidence for the monophyly of the genus Mycobacterium and the five described clades and they provide reliable means for the demarcation of these clades and for their diagnostics. Based on the results of our comprehensive phylogenomic analyses and numerous identified molecular signatures, which consistently and strongly support the division of known mycobacterial species into the five described clades, we propose here division of the genus Mycobacterium into an emended genus Mycobacterium encompassing the "Tuberculosis-Simiae" clade, which includes all of the major human pathogens, and four novel genera viz. Mycolicibacterium gen. nov., Mycolicibacter gen. nov., Mycolicibacillus gen. nov. and Mycobacteroides gen. nov. corresponding to the "Fortuitum-Vaccae," "Terrae," "Triviale," and "Abscessus-Chelonae" clades, respectively. With the division of mycobacterial species into these five distinct groups, attention can now be focused on unique genetic and molecular characteristics that differentiate members of these groups.

326 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Cd-hit-2d compares two protein datasets and reports similar matches between them; cd- Hit-est clusters a DNA/RNA sequence database and cd- hit-est-2D compares two nucleotide datasets.
Abstract: Motivation: In 2001 and 2002, we published two papers (Bioinformatics, 17, 282--283, Bioinformatics, 18, 77--82) describing an ultrafast protein sequence clustering program called cd-hit. This program can efficiently cluster a huge protein database with millions of sequences. However, the applications of the underlying algorithm are not limited to only protein sequences clustering, here we present several new programs using the same algorithm including cd-hit-2d, cd-hit-est and cd-hit-est-2d. Cd-hit-2d compares two protein datasets and reports similar matches between them; cd-hit-est clusters a DNA/RNA sequence database and cd-hit-est-2d compares two nucleotide datasets. All these programs can handle huge datasets with millions of sequences and can be hundreds of times faster than methods based on the popular sequence comparison and database search tools, such as BLAST. Availability: http://cd-hit.org Contact: [email protected]

8,306 citations

Journal ArticleDOI
25 Oct 1996-Science
TL;DR: The genome of the yeast Saccharomyces cerevisiae has been completely sequenced through a worldwide collaboration and provides information about the higher order organization of yeast's 16 chromosomes and allows some insight into their evolutionary history.
Abstract: The genome of the yeast Saccharomyces cerevisiae has been completely sequenced through a worldwide collaboration. The sequence of 12,068 kilobases defines 5885 potential protein-encoding genes, approximately 140 genes specifying ribosomal RNA, 40 genes for small nuclear RNA molecules, and 275 transfer RNA genes. In addition, the complete sequence provides information about the higher order organization of yeast's 16 chromosomes and allows some insight into their evolutionary history. The genome shows a considerable amount of apparent genetic redundancy, and one of the major problems to be tackled during the next stage of the yeast genome project is to elucidate the biological functions of all of these genes.

4,254 citations

Journal ArticleDOI
TL;DR: This work discloses that expression of Hsps can occur in nature, all species have hsp genes but they vary in the patterns of their expression, and Hsp expression can be correlated with resistance to stress, and species' thresholds for HSP expression are correlated with levels of stress that they naturally undergo.
Abstract: Molecular chaperones, including the heat-shock proteins (Hsps), are a ubiquitous feature of cells in which these proteins cope with stress-induced denaturation of other proteins. Hsps have received the most attention in model organisms undergoing experimental stress in the laboratory, and the function of Hsps at the molecular and cellular level is becoming well understood in this context. A complementary focus is now emerging on the Hsps of both model and nonmodel organisms undergoing stress in nature, on the roles of Hsps in the stress physiology of whole multicellular eukaryotes and the tissues and organs they comprise, and on the ecological and evolutionary correlates of variation in Hsps and the genes that encode them. This focus discloses that (a) expression of Hsps can occur in nature, (b) all species have hsp genes but they vary in the patterns of their expression, (c) Hsp expression can be correlated with resistance to stress, and (d) species' thresholds for Hsp expression are correlated with levels of stress that they naturally undergo. These conclusions are now well established and may require little additional confirmation; many significant questions remain unanswered concerning both the mechanisms of Hsp-mediated stress tolerance at the organismal level and the evolutionary mechanisms that have diversified the hsp genes.

3,841 citations

Journal ArticleDOI
TL;DR: The photodynamic therapy (PDT) is a clinically approved, minimally invasive therapeutic procedure that can exert a selective cytotoxic activity toward malignant cells as discussed by the authors, which can prolong survival in patients with inoperable cancers and significantly improve quality of life.
Abstract: Photodynamic therapy (PDT) is a clinically approved, minimally invasive therapeutic procedure that can exert a selective cytotoxic activity toward malignant cells. The procedure involves administration of a photosensitizing agent followed by irradiation at a wavelength corresponding to an absorbance band of the sensitizer. In the presence of oxygen, a series of events lead to direct tumor cell death, damage to the microvasculature, and induction of a local inflammatory reaction. Clinical studies revealed that PDT can be curative, particularly in early stage tumors. It can prolong survival in patients with inoperable cancers and significantly improve quality of life. Minimal normal tissue toxicity, negligible systemic effects, greatly reduced long-term morbidity, lack of intrinsic or acquired resistance mechanisms, and excellent cosmetic as well as organ function-sparing effects of this treatment make it a valuable therapeutic option for combination treatments. With a number of recent technological improvements, PDT has the potential to become integrated into the mainstream of cancer treatment. CA Cancer J Clin 2011;61:250-281. V C

3,770 citations

Journal ArticleDOI

3,734 citations