scispace - formally typeset
Search or ask a question
Author

Radhey S. Sharma

Other affiliations: VIT University, University of Bradford, Iowa State University  ...read more
Bio: Radhey S. Sharma is an academic researcher from West Virginia University. The author has contributed to research in topics: Medicine & Geogrid. The author has an hindex of 16, co-authored 28 publications receiving 1249 citations. Previous affiliations of Radhey S. Sharma include VIT University & University of Bradford.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the effect of fly ash content on the free swell index, swell potential, swelling pressure, plasticity, compaction, strength, and hydraulic conductivity characteristics of expansive soil was evaluated.
Abstract: This note presents a study of the efficacy of fly ash as an additive in improving the engineering characteristics of expansive soils. An experimental program has evaluated the effect of the fly ash content on the free swell index, swell potential, swelling pressure, plasticity, compaction, strength, and hydraulic conductivity characteristics of expansive soil. The plasticity, hydraulic conductivity and swelling properties of the blends decreased and the dry unit weight and strength increased with an increase in fly ash content. The resistance to penetration of the blends increased significantly with an increase in fly ash content for a given water content. Excellent correlation was obtained between the measured and predicted undrained shear strengths.

348 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the behavior of geosynthetic-reinforced sandy soil foundations and studied the effect of different parameters contributing to their performance using laboratory model tests.

165 citations

Journal ArticleDOI
TL;DR: In this paper, the authors developed analytical solutions for estimating the ultimate bearing capacity of geogrid reinforced soil foundations (RSF) for both sand and silty clay soils, and compared the predicted bearing capacity values with the results of laboratory model tests.

164 citations

Journal ArticleDOI
TL;DR: In this article, a series of tests performed to investigate improvement in load-carrying capacity and reduction in bulging of a granular pile in soft clay by geogrid reinforcement are presented.
Abstract: Results are presented from a series of tests performed to investigate improvement in load-carrying capacity and reduction in bulging of a granular pile in soft clay by geogrid reinforcement. The st...

111 citations

Journal ArticleDOI
TL;DR: In this article, the effect of fly ash on the volume change of two different types of clay, one a highly plastic expansive clay and the other a nonexpansive clay, also of high plasticity, was studied.
Abstract: This paper presents, by way of comparison, the effect of fly ash on the volume change of two different types of clay, one a highly plastic expansive clay and the other a nonexpansive clay, also of high plasticity. Expansive clays swell on absorbing water and shrink on drying. Nonexpansive clays undergo large compression at high water contents. The effect of fly ash content on free swell index, swell potential, and swelling pressure of expansive clays was studied. Compression index and secondary consolidation characteristics of both expansive and nonexpansive clays were also determined. Swell potential and swelling pressure, when determined at constant dry unit weight of the sample (mixture), decreased by nearly 50% and, when determined at constant weight of clay, increased by nearly 60% at 20% fly ash content. Compression index and coefficient of secondary consolidation of both the clays decreased by 40% at 20% fly ash content.

100 citations


Cited by
More filters
BookDOI
TL;DR: In this article, the characterization of cementitiously stabilized layers and the properties that influence pavement performance are discussed, as well as performance-related procedures for characterizing these layers and performance-prediction models for incorporation into the mechanistic-empirical pavement analysis methods.
Abstract: This report presents information on the characterization of cementitiously stabilized layers and the properties that influence pavement performance. It also contains recommended performance-related procedures for characterizing these layers and performance-prediction models for incorporation into the mechanistic–empirical pavement analysis methods. Individual chapters highlight pavement distresses of hot-mix asphalt pavements and concrete pavements, laboratory tests and model development, and model calibration. The material contained in the report will be of immediate interest to state materials, pavement, and construction engineers and others involved in the different aspects of pavement design and construction.

270 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the qualitative and quantitative improvement in load capacity of the stone column by encasement through a comprehensive parametric study using the finite element analysis and found that the encased stone columns have much higher load carrying capacities and undergo lesser compressions and lesser lateral bulging as compared to conventional stone columns.

264 citations

Journal ArticleDOI
TL;DR: In this article, the authors addressed the some fundamental and success soil improvement techniques used in civil engineering field and addressed the failure to identify the existence and magnitude of expansion of these soils in the early stage of project planning.
Abstract: Clayey soils are usually stiff when they are dry and give up their stiffness as they become saturated. Soft clays are associated with low compressive strength and excessive settlement. This reduction in strength due to moisture leads to severe damages to buildings and foundations. The soil behavior can be a challenge to the designer build infrastructure plans to on clay deposits. The damage due to the expansive soils every year is expected to be $1 billion in the USA, £150 million in the UK, and many billions of pounds worldwide. The damages associated with expansive soils are not because of the lack of inadequate engineering solutions but to the failure to identify the existence and magnitude of expansion of these soils in the early stage of project planning. One of the methods for soil improvement is that the problematic soil is replaced by suitable soil. The high cost involved in this method has led researchers to identify alternative methods, and soil stabilization with different additives is one of those methods. Recently, modern scientific techniques of soil stabilization are on offer for this purpose. Stabilized soil is a composite material that is obtained from the combination and optimization of properties of constituent materials. Adding cementing agents such as lime, cement and industrial byproducts like fly ash and slag, with soil results in improved geotechnical properties. However, during the past few decades, a number of cases have been reported where sulfate-rich soils stabilized by cement or lime underwent a significant amount of heave leading to pavement failure. This research paper addressed the some fundamental and success soil improvement that used in civil engineering field.

230 citations

Journal ArticleDOI
TL;DR: In this article, the effect of various reinforcement parameters like the type and tensile strength of geosynthetic material, amount of reinforcement, layout and configuration of geoSynthetic layers below the footing on the bearing capacity improvement of the footings is studied through systemati model studies.

218 citations

Journal ArticleDOI
Ali Behnood1
TL;DR: In this paper, the state of the practice in stabilization techniques and challenges is presented with a discussion, and available studies regarding the effects of various types of stabilizing agents on the engineering and geotechnical properties of stabilized soils are reviewed.
Abstract: Soil stabilization is a technique to improve the engineering and geotechnical properties of soils such as mechanical strength, permeability, compressibility, durability and plasticity. Much has been learned about soil stabilization techniques and additives over the past century. The state of the practice in stabilization techniques and challenges is presented with a discussion. Moreover, available studies regarding the effects of various types of stabilizing agents on the engineering and geotechnical properties of stabilized soils are reviewed here. These stabilizing agents include both calcium-based and non-calcium-based additives. Eco-friendly additives as alternative materials to conventional stabilizing agents are also discussed in this paper. In addition, the problems associated with the presence of disruptive salts and sulfate as well as the techniques to overcome these problems in soil stabilization projects are reviewed.

187 citations