scispace - formally typeset
Search or ask a question
Author

Radovan Borojevic

Bio: Radovan Borojevic is an academic researcher from Federal University of Rio de Janeiro. The author has contributed to research in topics: Hepatic stellate cell & Stromal cell. The author has an hindex of 46, co-authored 301 publications receiving 9882 citations. Previous affiliations of Radovan Borojevic include Pasteur Institute & National Institute of Metrology Standardization and Industrial Quality.


Papers
More filters
Journal ArticleDOI
TL;DR: The present study demonstrates the relative safety of intramyocardial injections of bone marrow–derived stem cells in humans with severe heart failure and the potential for improving myocardial blood flow with associated enhancement of regional and global left ventricular function.
Abstract: Background— This study evaluated the hypothesis that transendocardial injections of autologous mononuclear bone marrow cells in patients with end-stage ischemic heart disease could safely promote neovascularization and improve perfusion and myocardial contractility. Methods and Results— Twenty-one patients were enrolled in this prospective, nonrandomized, open-label study (first 14 patients, treatment; last 7 patients, control). Baseline evaluations included complete clinical and laboratory evaluations, exercise stress (ramp treadmill), 2D Doppler echocardiogram, single-photon emission computed tomography perfusion scan, and 24-hour Holter monitoring. Bone marrow mononuclear cells were harvested, isolated, washed, and resuspended in saline for injection by NOGA catheter (15 injections of 0.2 cc). Electromechanical mapping was used to identify viable myocardium (unipolar voltage ≥6.9 mV) for treatment. Treated and control patients underwent 2-month noninvasive follow-up, and treated patients alone underwen...

1,375 citations

Journal ArticleDOI
TL;DR: This study resulted in a consistent PRP preparation method that yielded a cytokine and growth factor pool from different donors with high reproducibility and its content characterization will allow us to understand and improve the clinical outcomes.
Abstract: Platelet-rich plasma (PRP) is nowadays widely applied in different clinical scenarios, such as orthopedics, ophthalmology and healing therapies, as a growth factor pool for improving tissue regeneration. Studies into its clinical efficiency are not conclusive and one of the main reasons for this is that different PRP preparations are used, eliciting different responses that cannot be compared. Platelet quantification and the growth factor content definition must be defined in order to understand molecular mechanisms behind PRP regenerative strength. Standardization of PRP preparations is thus urgently needed. PRP was prepared by centrifugation varying the relative centrifugal force, temperature, and time. Having quantified platelet recovery and yield, the two-step procedure that rendered the highest output was chosen and further analyzed. Cytokine content was determined in different fractions obtained throughout the whole centrifugation procedure. Our method showed reproducibility when applied to different blood donors. We recovered 46.9 to 69.5% of total initial platelets and the procedure resulted in a 5.4-fold to 7.3-fold increase in platelet concentration (1.4 × 106 to 1.9 × 106 platelets/μl). Platelets were highly purified, because only <0.3% from the initial red blood cells and leukocytes was present in the final PRP preparation. We also quantified growth factors, cytokines and chemokines secreted by the concentrated platelets after activation with calcium and calcium/thrombin. High concentrations of platelet-derived growth factor, endothelial growth factor and transforming growth factor (TGF) were secreted, together with the anti-inflammatory and proinflammatory cytokines interleukin (IL)-4, IL-8, IL-13, IL-17, tumor necrosis factor (TNF)-α and interferon (IFN)-α. No cytokines were secreted before platelet activation. TGF-β3 and IFNγ were not detected in any studied fraction. Clots obtained after platelet coagulation retained a high concentration of several growth factors, including platelet-derived growth factor and TGF. Our study resulted in a consistent PRP preparation method that yielded a cytokine and growth factor pool from different donors with high reproducibility. These findings support the use of PRP in therapies aiming for tissue regeneration, and its content characterization will allow us to understand and improve the clinical outcomes.

480 citations

Journal ArticleDOI
TL;DR: The 6- and 12-month follow-up data suggest that transendocardial injection of ABMMNCs in patients with end-stage ischemic heart disease may produce a durable therapeutic effect and improve myocardial perfusion and exercise capacity.
Abstract: Background—We recently reported the safety and feasibility of autologous bone marrow mononuclear cell (ABMMNC) injection into areas of ischemic myocardium in patients with end-stage ischemic cardiomyopathy. The present study evaluated the safety and efficacy of this therapy at 6- and 12-month follow-up. Methods and Results—Twenty patients with 6- and 12-month follow-up (11 treated subjects; 9 controls) were enrolled in this prospective, nonrandomized, open-label study. Complete clinical and laboratory evaluations as well as exercise stress (ramp treadmill), 2-dimensional Doppler echocardiography, single-photon emission computed tomography (SPECT) perfusion scanning, and 24-hour Holter monitoring were performed at baseline and follow-up. Transendocardial delivery of ABMMNCs was performed with the aid of electromechanical mapping to identify viable myocardium. Each patient received 15 ABMMNC injections of 0.2 mL each. At 6 and 12 months, total reversible defect, as measured by SPECT perfusion scanning, was significantly reduced in the treatment group as compared with the control group. At 12 months, exercise capacity was significantly improved in the treatment group. This improvement correlated well with monocyte, B-cell, hematopoietic progenitor cell, and early hemapoietic progenitor cell phenotypes. Conclusions—The 6- and 12-month follow-up data in this study suggest that transendocardial injection of ABMMNCs in patients with end-stage ischemic heart disease may produce a durable therapeutic effect and improve myocardial perfusion and exercise capacity. (Circulation. 2004;110[suppl II]:II-213–II-218.)

383 citations

Journal ArticleDOI
TL;DR: The biocomposite studied has several characteristics considered as ideal for its use as a scaffold for osteoconduction and osteoinduction, including surface calcium hydroxide, surface and crystal water, free carbon dioxide and possibly brushite.

311 citations

Journal ArticleDOI
TL;DR: Mesenchymal stromal cells purified from different tissues have different angiogenic, inflammatory and matrix remodeling potential properties and these abilities should be further characterized in order to choose the best protocols for their therapeutic use.
Abstract: Different mesenchymal stromal cells (MSC) have been successfully isolated and expanded in vitro and nowadays they are tested in clinical trials for a wide variety of diseases. Whether all MSC express the same cell surface markers or have a similar secretion profile is still controversial, making it difficult to decide which stromal cell may be better for a particular application. We isolated human mesenchymal stromal cells from bone marrow (BM), adipose tissue (AT) and Wharton’s jelly (WJ) and cultured them in fetal bovine serum supplemented media. We evaluated proliferation, in vitro differentiation (osteogenic, adipogenic and chondrogenic potential), expression of cell surface markers and protein secretion using Luminex and ELISA assays. Cell proliferation was higher for WJ-MSC, followed by AT-MSC. Differences in surface expression markers were observed only for CD54 and CD146. WJ-MSC secreted higher concentrations of chemokines, pro-inflammatory proteins and growth factors. AT-MSC showed a better pro-angiogenic profile and secreted higher amounts of extracellular matrix components and metalloproteinases. Mesenchymal stromal cells purified from different tissues have different angiogenic, inflammatory and matrix remodeling potential properties. These abilities should be further characterized in order to choose the best protocols for their therapeutic use.

269 citations


Cited by
More filters
Journal ArticleDOI
15 Feb 2005-Blood
TL;DR: Insight is offered into the interactions between allogeneic MSCs and immune cells and mechanisms likely involved with the in vivo MSC-mediated induction of tolerance that could be therapeutic for reduction of GVHD, rejection, and modulation of inflammation.

4,264 citations

Journal ArticleDOI
19 Sep 2003-Cell
TL;DR: The existence of Lin(-) c-kit(POS) cells with the properties of cardiac stem cells, which are self-renewing, clonogenic, and multipotent, giving rise to myocytes, smooth muscle, and endothelial cells are reported.

3,651 citations

Journal ArticleDOI
TL;DR: The results indicate that M-1- or M-2-dominant macrophage responses can influence whether Th1/Th2 or other types of inflammatory responses occur.
Abstract: Evidence is provided that macrophages can make M-1 or M-2 responses. The concept of M-1/M-2 fomented from observations that macrophages from prototypical Th1 strains (C57BL/6, B10D2) are more easily activated to produce NO with either IFN-g or LPS than macrophages from Th2 strains (BALB/c, DBA/2). In marked contrast, LPS stimulates Th2, but not Th1, macrophages to increase arginine metabolism to ornithine. Thus, M-1/M-2 does not simply describe activated or unactivated macrophages, but cells expressing distinct metabolic programs. Because NO inhibits cell division, while ornithine can stimulate cell division (via polyamines), these results also indicate that M-1 and M-2 responses can influence inflammatory reactions in opposite ways. Macrophage TGF-b1, which inhibits inducible NO synthase and stimulates arginase, appears to play an important role in regulating the balance between M-1 and M-2. M-1/M-2 phenotypes are independent of T or B lymphocytes because C57BL/6 and BALB/c NUDE or SCID macrophages also exhibit M-1/M-2. Indeed, M-1/M-2 proclivities are magnified in NUDE and SCID mice. Finally, C57BL/6 SCID macrophages cause CB6F1 lymphocytes to increase IFN-g production, while BALB/c SCID macrophages increase TGF-b production. Together, the results indicate that M-1- or M-2-dominant macrophage responses can influence whether Th1/Th2 or other types of inflammatory responses occur. The Journal of Immunology, 2000, 164: 6166 ‐ 6173.

2,501 citations

Journal ArticleDOI
TL;DR: The hepatic stellate cell has surprised and engaged physiologists, pathologists, and hepatologists for over 130 years, yet clear evidence of its role in hepatic injury and fibrosis only emerged following the refinement of methods for its isolation and characterization.
Abstract: The hepatic stellate cell has surprised and engaged physiologists, pathologists, and hepatologists for over 130 years, yet clear evidence of its role in hepatic injury and fibrosis only emerged following the refinement of methods for its isolation and characterization. The paradigm in liver injury of activation of quiescent vitamin A-rich stellate cells into proliferative, contractile, and fibrogenic myofibroblasts has launched an era of astonishing progress in understanding the mechanistic basis of hepatic fibrosis progression and regression. But this simple paradigm has now yielded to a remarkably broad appreciation of the cell's functions not only in liver injury, but also in hepatic development, regeneration, xenobiotic responses, intermediary metabolism, and immunoregulation. Among the most exciting prospects is that stellate cells are essential for hepatic progenitor cell amplification and differentiation. Equally intriguing is the remarkable plasticity of stellate cells, not only in their variable intermediate filament phenotype, but also in their functions. Stellate cells can be viewed as the nexus in a complex sinusoidal milieu that requires tightly regulated autocrine and paracrine cross-talk, rapid responses to evolving extracellular matrix content, and exquisite responsiveness to the metabolic needs imposed by liver growth and repair. Moreover, roles vital to systemic homeostasis include their storage and mobilization of retinoids, their emerging capacity for antigen presentation and induction of tolerance, as well as their emerging relationship to bone marrow-derived cells. As interest in this cell type intensifies, more surprises and mysteries are sure to unfold that will ultimately benefit our understanding of liver physiology and the diagnosis and treatment of liver disease.

2,419 citations

Journal Article
TL;DR: Research data show that more resistant stem cells than common cancer cells exist in cancer patients, and to identify unrecognized differences between cancer stem cells and cancer cells might be able to develop effective classification, diagnose and treat for cancer.
Abstract: Stem cells are defined as cells able to both extensively self-renew and differentiate into progenitors. Research data show that more resistant stem cells than common cancer cells exist in cancer patients.To identify unrecognized differences between cancer stem cells and cancer cells might be able to develope effective classification,diagnose and treat ment for cancer.

2,194 citations