scispace - formally typeset
Search or ask a question
Author

Radu Motișan

Bio: Radu Motișan is an academic researcher. The author has contributed to research in topics: Air quality index & Air pollution. The author has an hindex of 1, co-authored 1 publications receiving 6 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors summarized the most important air pollutants and their impact on the main respiratory diseases (chronic obstructive pulmonary disease, asthma, lung cancer, idiopathic pulmonary fibrosis, respiratory infections, bronchiectasis, tuberculosis) to reduce both short and long-term exposure consequences.
Abstract: There is increasing interest in understanding the role of air pollution as one of the greatest threats to human health worldwide. Nine of 10 individuals breathe air with polluted compounds that have a great impact on lung tissue. The nature of the relationship is complex, and new or updated data are constantly being reported in the literature. The goal of our review was to summarize the most important air pollutants and their impact on the main respiratory diseases (chronic obstructive pulmonary disease, asthma, lung cancer, idiopathic pulmonary fibrosis, respiratory infections, bronchiectasis, tuberculosis) to reduce both short- and the long-term exposure consequences. We considered the most important air pollutants, including sulfur dioxide, nitrogen dioxide, carbon monoxide, volatile organic compounds, ozone, particulate matter and biomass smoke, and observed their impact on pulmonary pathologies. We focused on respiratory pathologies, because air pollution potentiates the increase in respiratory diseases, and the evidence that air pollutants have a detrimental effect is growing. It is imperative to constantly improve policy initiatives on air quality in both high- and low-income countries.

49 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is concluded that there is a significant association between chronic exposure to various outdoor air pollutants: PM2.5, PM10, O3, NO2, SO2 and CO, and the incidence/risk of COVID-19 cases, as well as the severity/mortality of the disease.

89 citations

Journal ArticleDOI
TL;DR: In this article , a review focused on assessing the influence of various air pollutants on the transmission of SARS-CoV-2, and the severity of COVID-19 in patients infected by the coronavirus.
Abstract: In June 2020, we published a review focused on assessing the influence of various air pollutants on the transmission of SARS-CoV-2, and the severity of COVID-19 in patients infected by the coronavirus. The results of most of those reviewed studies suggested that chronic exposure to certain air pollutants might lead to more severe and lethal forms of COVID-19, as well as delays/complications in the recovery of the patients. Since then, a notable number of studies on this topic have been published, including also various reviews. Given the importance of this issue, we have updated the information published since our previous review. Taking together the previous results and those of most investigations now reviewed, we have concluded that there is a significant association between chronic exposure to various outdoor air pollutants: PM2.5, PM10, O3, NO2, SO2 and CO, and the incidence/risk of COVID-19 cases, as well as the severity/mortality of the disease. Unfortunately, studies on the potential influence of other important air pollutants such as VOCs, dioxins and furans, or metals, are not available in the scientific literature. In relation to the influence of outdoor air pollutants on the transmission of SARS-CoV-2, although the scientific evidence is much more limited, some studies point to PM2.5 and PM10 as potential airborne transmitters of the virus. Anyhow, it is clear that environmental air pollution plays an important negative role in COVID-19, increasing its incidence and mortality.

81 citations

Journal ArticleDOI
TL;DR: In this article , a review of the research progress of triboelectric nanogenerators for environmental monitoring is systematically summarized and a discussion of the challenges and problems of leveraging TENGs for self-powered environmental monitoring are discussed.

25 citations

Journal ArticleDOI
TL;DR: In this article , the authors analyzed the air quality data trends and sustainability indicators in six South Asian countries using a step-wise approach, including India, Nepal, Bangladesh, Pakistan, Sri Lanka, and Nepal.
Abstract: Introduction: Worsening air quality and pollution lead to numerous environmental health and sustainability issues in the South Asia region. This study analyzes India, Nepal, Bangladesh, Pakistan, Sri Lanka, and Nepal for air quality data trends and sustainability indicators. Methodology: By using a population-based study design, six South Asian countries were analyzed using a step-wise approach. Data were obtained from government websites and publicly available repositories for region dynamics and key variables. Results: Between 1990 and 2020, air quality data indicated the highest rise in CO2 emissions in India (578.5 to 2441.8 million tons) (MT), Bangladesh, Nepal, and Pakistan. Greenhouse gas emissions, from 1990 to 2018, nearly tripled in India (1990.4 to 3346.6 MT of CO2-equivalents), Nepal (20.6 to 54.6 MT of CO2-equivalents), and Pakistan, and doubled in Bangladesh. Methane emissions rose the highest in Pakistan (70.4 to 151 MT of CO2-equivalents), followed by Nepal (17 to 31 MT of CO2-equivalents) and India (524.8 to 669.3 MT of CO2-equivalents). Nitrous oxide nearly doubled in Bangladesh (16.5 to 29.3 MT of CO2-equivalents), India (141.6 to 256.9 MT of CO2-equivalents), Nepal (17 to 31 MT of CO2-equivalents), and more than doubled in Pakistan (27 to 61 MT of CO2-equivalents). On noting particulate matter 2,5 annual exposure, India saw the highest rise from 81.3 µg/m3 (in 1990) to 90.9 µg/m3 (2017), whereas trends were steady in Pakistan (60.34 to 58.3 µg/m3). The highest rise was noted in Nepal (87.6 to 99.7 µg/m3) until 2017. During the coronavirus disease 19 pandemic, the pre-and post-pandemic changes between 2018 and 2021 indicated the highest PM2.5 concentration in Bangladesh (76.9 µg/m3), followed by Pakistan (66.8 µg/m3), India (58.1 µg/m3), Nepal (46 µg/m3) and Sri Lanka (17.4 µg/m3). Overall, South Asian countries contribute to the worst air quality and sustainability trends regions worldwide. Conclusions: Air pollution is prevalent across a majority of South Asia countries. Owing to unsustainable industrial practices, pollution trends have risen to hazardous levels. Economic, environmental, and human health impacts have manifested and require urgent, concerted efforts by governing bodies in the region.

10 citations

Journal ArticleDOI
TL;DR: In this paper , a novel detection method for sulfur dioxide in aqueous solutions, in which the presence of sulfur dioxide leads to color changes of filter paper modified with both β-cyclodextrin and manganese, is presented.

9 citations