scispace - formally typeset
Search or ask a question
Author

Rafael Font

Bio: Rafael Font is an academic researcher from University of Alicante. The author has contributed to research in topics: Pyrolysis & Combustion. The author has an hindex of 47, co-authored 175 publications receiving 6429 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the thermal decomposition of two lignocellulosic materials (olive stones and almond shells) were studied using dynamic TG at heating rates between 2 and 25 K min−1 at atmospheric pressure.
Abstract: The kinetics of thermal decomposition of two lignocellulosic materials (olive stones and almond shells) were studied using dynamic TG at heating rates between 2 and 25 K min−1 at atmospheric pressure. Different kinetic models were tested, that consider that the thermal decomposition of lignocellulosic materials can be grouped in two or three overall processes (each one being the result of a great number of reactions) corresponding to the hemicellulose, cellulose and lignin decompositions. The best results were obtained with a model that considers that the biomass decomposes via three independent reactions. There is a qualitative agreement between the decomposition of hemicellulose, cellulose and lignin with the peaks observed in the TG-DTG diagram, but the simple addition of the kinetics of isolated compounds cannot satisfactorily reproduce the kinetic behaviour of any raw material, and consequently some interactions must exist between the fractions considered.

260 citations

Journal ArticleDOI
TL;DR: In this paper, the kinetics of the thermal decomposition of cellulose in nitrogen were studied using dynamic TG at heating rates between 5 and 50 K min −1, and the most widely used models found in the literature which are usually applied in isothermal conditions were tested.
Abstract: The kinetics of the thermal decomposition of cellulose in nitrogen were studied using dynamic TG at heating rates between 5 and 50 K min −1 . The most widely used models found in the literature which are usually applied in isothermal conditions were tested. Important differences were found between models that take into account the formation of an activated cellulose and those that assume the direct decomposition of cellulose to char, tar and gases. The best agreement between experimental and calculated values was found with models which consider the formation of activated cellulose and take into account the different behaviour at low and high temperatures. The simultaneous correlation of all the experimental data obtained in different conditions is proposed as a technique to prevent compensating effects between the pre-exponential factor and the activation energy, and thus to avoid erroneous conclusions.

184 citations

Journal ArticleDOI
TL;DR: In this paper, a fluidized sand bed reactor was used to study the production of gases from polyethylene (HDPE) at five nominal temperatures (ranging from 500 to 900°C).
Abstract: A fluidized sand bed reactor was used to study the production of gases from polyethylene (HDPE) at five nominal temperatures (ranging from 500 to 900°C). Both HDPE primary decomposition and wax cracking reactions take place inside the reactor. Yields of 13 pyrolysis products (methane, ethane, ethylene, propane, propylene, acetylene, butane, butylene, pentane, benzene, toluene, xylenes, and styrene) were analyzed as a function of the operating conditions. The results are compared with the data obtained by pyrolysis of HDPE in a Pyroprobe 1000, where secondary wax and tar cracking is small. Correlations between the products analyzed with those of methane are discussed.

174 citations

Journal ArticleDOI
TL;DR: This work consists of a review of kinetic models used for material decomposition, and also of the methods used for the analysis, and of the different models available for kinetic studies in thermobalance.
Abstract: This work deals with the kinetic analysis of data obtained in thermobalance. It consists of a review of kinetic models used for material decomposition, and also of the methods used for the analysis. The topics presented comprise numerical problems related with kinetic analysis, best conditions for a kinetic run, discussion about correlation vs. actual models, nth order models, more complex models (models using a great number of reactions, models using various fractions), calibration of the temperature, position of the thermocouple, sample mass and particle size. Other topics treated are the validation of kinetic models using MS data and the different models available for kinetic studies in thermobalance.

158 citations

Journal ArticleDOI
TL;DR: The emission of PAHs and dioxins seems to increase with the amount of tyres fed to the kiln, probably due to the fed point used for this waste.
Abstract: In this work, an analysis of the emission of different pollutants when replacing partially the fuel type used in a cement kiln is done. The wastes used to feed the kiln were tyres and two types of sewage sludge. The increasing mass flow of sludge is between 700 kg h(-1) and 5,500 kg h(-1)1, for a total production of clinker of 150th(-1), whereas the fed tyres were in the flow range of 500-1,500 kg h(-1). Dioxins and furans, polycyclic aromatic hydrocarbons (PAHs) and other hydrocarbons, heavy metals, HCl and HF, CO, CO(2), NO(x) and other parameters of the stack were analyzed, according to the standard methods of sampling and determination, through more than 1 year in six series: one blank (no sewage sludge) and five more with increasing amount of sludge and/or tyres. The emission of PAHs and dioxins seems to increase with the amount of tyres fed to the kiln, probably due to the fed point used for this waste.

141 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review of the recent developments in the wood pyrolysis and reports the characteristics of the resulting bio-oils, which are the main products of fast wood pyrotechnics, can be found in this paper.
Abstract: Fast pyrolysis utilizes biomass to produce a product that is used both as an energy source and a feedstock for chemical production. Considerable efforts have been made to convert wood biomass to liquid fuels and chemicals since the oil crisis in mid-1970s. This review focuses on the recent developments in the wood pyrolysis and reports the characteristics of the resulting bio-oils, which are the main products of fast wood pyrolysis. Virtually any form of biomass can be considered for fast pyrolysis. Most work has been performed on wood, because of its consistency and comparability between tests. However, nearly 100 types of biomass have been tested, ranging from agricultural wastes such as straw, olive pits, and nut shells to energy crops such as miscanthus and sorghum. Forestry wastes such as bark and thinnings and other solid wastes, including sewage sludge and leather wastes, have also been studied. In this review, the main (although not exclusive) emphasis has been given to wood. The literature on woo...

4,988 citations

Journal ArticleDOI
TL;DR: Although primary and secondary recycling schemes are well established and widely applied, it is concluded that many of the PSW tertiary and quaternary treatment schemes appear to be robust and worthy of additional investigation.
Abstract: Plastic solid waste (PSW) presents challenges and opportunities to societies regardless of their sustainability awareness and technological advances. In this paper, recent progress in the recycling and recovery of PSW is reviewed. A special emphasis is paid on waste generated from polyolefinic sources, which makes up a great percentage of our daily single-life cycle plastic products. The four routes of PSW treatment are detailed and discussed covering primary (re-extrusion), secondary (mechanical), tertiary (chemical) and quaternary (energy recovery) schemes and technologies. Primary recycling, which involves the re-introduction of clean scrap of single polymer to the extrusion cycle in order to produce products of the similar material, is commonly applied in the processing line itself but rarely applied among recyclers, as recycling materials rarely possess the required quality. The various waste products, consisting of either end-of-life or production (scrap) waste, are the feedstock of secondary techniques, thereby generally reduced in size to a more desirable shape and form, such as pellets, flakes or powders, depending on the source, shape and usability. Tertiary treatment schemes have contributed greatly to the recycling status of PSW in recent years. Advanced thermo-chemical treatment methods cover a wide range of technologies and produce either fuels or petrochemical feedstock. Nowadays, non-catalytic thermal cracking (thermolysis) is receiving renewed attention, due to the fact of added value on a crude oil barrel and its very valuable yielded products. But a fact remains that advanced thermo-chemical recycling of PSW (namely polyolefins) still lacks the proper design and kinetic background to target certain desired products and/or chemicals. Energy recovery was found to be an attainable solution to PSW in general and municipal solid waste (MSW) in particular. The amount of energy produced in kilns and reactors applied in this route is sufficiently investigated up to the point of operation, but not in terms of integration with either petrochemical or converting plants. Although primary and secondary recycling schemes are well established and widely applied, it is concluded that many of the PSW tertiary and quaternary treatment schemes appear to be robust and worthy of additional investigation.

1,672 citations

Journal ArticleDOI
TL;DR: A broad review of the state-of-the-art biomass pyrolysis research can be found in this article, where three major components (cellulose, hemicellulose and lignin) are discussed in detail.
Abstract: The past decades have seen increasing interest in developing pyrolysis pathways to produce biofuels and bio-based chemicals from lignocellulosic biomass. Pyrolysis is a key stage in other thermochemical conversion processes, such as combustion and gasification. Understanding the reaction mechanisms of biomass pyrolysis will facilitate the process optimization and reactor design of commercial-scale biorefineries. However, the multiscale complexity of the biomass structures and reactions involved in pyrolysis make it challenging to elucidate the mechanism. This article provides a broad review of the state-of-art biomass pyrolysis research. Considering the complexity of the biomass structure, the pyrolysis characteristics of its three major individual components (cellulose, hemicellulose and lignin) are discussed in detail. Recently developed experimental technologies, such as Py-GC–MS/FID, TG-MS/TG-FTIR, in situ spectroscopy, 2D-PCIS, isotopic labeling method, in situ EPR and PIMS have been employed for biomass pyrolysis research, including online monitoring of the evolution of key intermediate products and the qualitative and quantitative measurement of the pyrolysis products. Based on experimental results, many macroscopic kinetic modeling methods with comprehensive mechanism schemes, such as the distributed activation energy model (DAEM), isoconversional method, detailed lumped kinetic model, kinetic Monte Carlo model, have been developed to simulate the mass loss behavior during biomass pyrolysis and to predict the resulting product distribution. Combined with molecular simulations of the elemental reaction routes, an in-depth understanding of the biomass pyrolysis mechanism may be obtained. Aiming to further improve the quality of pyrolysis products, the effects of various catalytic methods and feedstock pretreatment technologies on the pyrolysis behavior are also reviewed. At last, a brief conclusion for the challenge and perspectives of biomass pyrolysis is provided.

1,613 citations

Journal ArticleDOI
TL;DR: In this article, the state of the art in modeling chemical and physical processes of wood and biomass pyrolysis is reported, and the main achievements of numerical simulations are discussed.
Abstract: This review reports the state of the art in modeling chemical and physical processes of wood and biomass pyrolysis. Chemical kinetics are critically discussed in relation to primary reactions, described by one- and multi-component (or one- and multi-stage) mechanisms, and secondary reactions of tar cracking and polymerization. A mention is also made of distributed activation energy models and detailed mechanisms which try to take into account the formation of single gaseous or liquid (tar) species. Different approaches used in the transport models are presented at both the level of single particle and reactor, together with the main achievements of numerical simulations. Finally, critical issues which require further investigation are indicated.

1,495 citations

Journal ArticleDOI
TL;DR: In this paper, a general summary of the properties of pyrolytic products and their analysis methods is given, as well as a review of the parameters that affect the process and a summary of current state of the art.
Abstract: Pyrolysis is one of the thermochemical technologies for converting biomass into energy and chemical products consisting of liquid bio-oil, solid biochar, and pyrolytic gas. Depending on the heating rate and residence time, biomass pyrolysis can be divided into three main categories slow (conventional), fast and flash pyrolysis mainly aiming at maximising either the bio-oil or biochar yields. Synthesis gas or hydrogen-rich gas can also be the target of biomass pyrolysis. Maximised gas rates can be achieved through the catalytic pyrolysis process, which is now increasingly being developed. Biomass pyrolysis generally follows a three-step mechanism comprising of dehydration, primary and secondary reactions. Dehydrogenation, depolymerisation, and fragmentation are the main competitive reactions during the primary decomposition of biomass. A number of parameters affect the biomass pyrolysis process, yields and properties of products. These include the biomass type, biomass pretreatment (physical, chemical, and biological), reaction atmosphere, temperature, heating rate and vapour residence time. This manuscript gives a general summary of the properties of the pyrolytic products and their analysis methods. Also provided are a review of the parameters that affect biomass pyrolysis and a summary of the state of industrial pyrolysis technologies.

1,379 citations