scispace - formally typeset
Search or ask a question
Author

Rafael Malach

Bio: Rafael Malach is an academic researcher from Weizmann Institute of Science. The author has contributed to research in topics: Visual cortex & Default mode network. The author has an hindex of 71, co-authored 195 publications receiving 26732 citations. Previous affiliations of Rafael Malach include Center for Neural Science & Harvard University.


Papers
More filters
Journal ArticleDOI
TL;DR: The lateral occipital complex (LO) showed preferential activation to images of objects, compared to a wide range of texture patterns as mentioned in this paper, suggesting that objects varying widely in their recognizability (e.g., famous faces, common objects, and unfamiliar three-dimensional abstract sculptures) activated it to a similar degree.
Abstract: The stages of integration leading from local feature analysis to object recognition were explored in human visual cortex by using the technique of functional magnetic resonance imaging. Here we report evidence for object-related activation. Such activation was located at the lateral-posterior aspect of the occipital lobe, just abutting the posterior aspect of the motion-sensitive area MT/V5, in a region termed the lateral occipital complex (LO). LO showed preferential activation to images of objects, compared to a wide range of texture patterns. This activation was not caused by a global difference in the Fourier spatial frequency content of objects versus texture images, since object images produced enhanced LO activation compared to textures matched in power spectra but randomized in phase. The preferential activation to objects also could not be explained by different patterns of eye movements: similar levels of activation were observed when subjects fixated on the objects and when they scanned the objects with their eyes. Additional manipulations such as spatial frequency filtering and a 4-fold change in visual size did not affect LO activation. These results suggest that the enhanced responses to objects were not a manifestation of low-level visual processing. A striking demonstration that activity in LO is uniquely correlated to object detectability was produced by the "Lincoln" illusion, in which blurring of objects digitized into large blocks paradoxically increases their recognizability. Such blurring led to significant enhancement of LO activation. Despite the preferential activation to objects, LO did not seem to be involved in the final, "semantic," stages of the recognition process. Thus, objects varying widely in their recognizability (e.g., famous faces, common objects, and unfamiliar three-dimensional abstract sculptures) activated it to a similar degree. These results are thus evidence for an intermediate link in the chain of processing stages leading to object recognition in human visual cortex.

1,697 citations

Journal ArticleDOI
12 Mar 2004-Science
TL;DR: A striking level of voxel-by-voxel synchronization between individuals is found, not only in primary and secondary visual and auditory areas but also in association cortices, which reveals a surprising tendency of individual brains to “tick collectively” during natural vision.
Abstract: To what extent do all brains work alike during natural conditions? We explored this question by letting five subjects freely view half an hour of a popular movie while undergoing functional brain imaging. Applying an unbiased analysis in which spatiotemporal activity patterns in one brain were used to “model” activity in another brain, we found a striking level of voxel-by-voxel synchronization between individuals, not only in primary and secondary visual and auditory areas but also in association cortices. The results reveal a surprising tendency of individual brains to “tick collectively” during natural vision. The intersubject synchronization consisted of a widespread cortical activation pattern correlated with emotionally arousing scenes and regionally selective components. The characteristics of these activations were revealed with the use of an open-ended “reverse-correlation” approach, which inverts the conventional analysis by letting the brain signals themselves “pick up” the optimal stimuli for each specialized cortical area.

1,499 citations

Journal ArticleDOI
TL;DR: FMRI activity in human MT does in fact decrease at and near individually measured equiluminance, and area MT has a much higher contrast sensitivity than that in several other areas, including primary visual cortex (V1).
Abstract: Using noninvasive functional magnetic resonance imaging (fMRI) technique, we analyzed the responses in human area MT with regard to visual motion, color, and luminance contrast sensitivity, and retinotopy. As in previous PET studies, we found that area MT responded selectively to moving (compared to stationary) stimuli. The location of human MT in the present fMRI results is consistent with that of MT in earlier PET and anatomical studies. In addition we found that area MT has a much higher contrast sensitivity than that in several other areas, including primary visual cortex (V1). Functional MRI half-amplitudes in V1 and MT occurred at approximately 15% and 1% luminance contrast, respectively. High sensitivity to contrast and motion in MT have been closely associated with magnocellular stream specialization in nonhuman primates. Human psychophysics indicates that visual motion appears to diminish when moving color-varying stimuli are equated in luminance. Electrophysiological results from macaque MT suggest that the human percept could be due to decreases in firing of area MT cells at equiluminance. We show here that fMRI activity in human MT does in fact decrease at and near individually measured equiluminance. Tests with visuotopically restricted stimuli in each hemifield produced spatial variations in fMRI activity consistent with retinotopy in human homologs of macaque areas V1, V2, V3, and VP. Such activity in area MT appeared much less retinotopic, as in macaque. However, it was possible to measure the interhemispheric spread of fMRI activity in human MT (half amplitude activation across the vertical meridian = approximately 15 degrees).

1,365 citations

Journal ArticleDOI
01 Sep 1999-Neuron
TL;DR: The utility of fMR adaptation for revealing functional characteristics of neurons in fMRI studies is demonstrated, namely, reduction of the fMR signal due to repeated presentation of identical images.

1,205 citations

Journal ArticleDOI
TL;DR: Recent findings and methods employed to uncover the functional properties of the human visual cortex focusing on two themes: functional specialization and hierarchical processing are reviewed.
Abstract: The discovery and analysis of cortical visual areas is a major accomplishment of visual neuroscience. In the past decade the use of noninvasive functional imaging, particularly functional magnetic resonance imaging (fMRI), has dramatically increased our detailed knowledge of the functional organization of the human visual cortex and its relation to visual perception. The fMRI method offers a major advantage over other techniques applied in neuroscience by providing a large-scale neuroanatomical perspective that stems from its ability to image the entire brain essentially at once. This bird's eye view has the potential to reveal large-scale principles within the very complex plethora of visual areas. Thus, it could arrange the entire constellation of human visual areas in a unified functional organizational framework. Here we review recent findings and methods employed to uncover the functional properties of the human visual cortex focusing on two themes: functional specialization and hierarchical processing.

1,075 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: A set of automated procedures for obtaining accurate reconstructions of the cortical surface are described, which have been applied to data from more than 100 subjects, requiring little or no manual intervention.

9,599 citations

Journal ArticleDOI
TL;DR: Past observations are synthesized to provide strong evidence that the default network is a specific, anatomically defined brain system preferentially active when individuals are not focused on the external environment, and for understanding mental disorders including autism, schizophrenia, and Alzheimer's disease.
Abstract: Thirty years of brain imaging research has converged to define the brain’s default network—a novel and only recently appreciated brain system that participates in internal modes of cognition Here we synthesize past observations to provide strong evidence that the default network is a specific, anatomically defined brain system preferentially active when individuals are not focused on the external environment Analysis of connectional anatomy in the monkey supports the presence of an interconnected brain system Providing insight into function, the default network is active when individuals are engaged in internally focused tasks including autobiographical memory retrieval, envisioning the future, and conceiving the perspectives of others Probing the functional anatomy of the network in detail reveals that it is best understood as multiple interacting subsystems The medial temporal lobe subsystem provides information from prior experiences in the form of memories and associations that are the building blocks of mental simulation The medial prefrontal subsystem facilitates the flexible use of this information during the construction of self-relevant mental simulations These two subsystems converge on important nodes of integration including the posterior cingulate cortex The implications of these functional and anatomical observations are discussed in relation to possible adaptive roles of the default network for using past experiences to plan for the future, navigate social interactions, and maximize the utility of moments when we are not otherwise engaged by the external world We conclude by discussing the relevance of the default network for understanding mental disorders including autism, schizophrenia, and Alzheimer’s disease

8,448 citations