scispace - formally typeset
Search or ask a question
Author

Rafaela C Sanfelice

Bio: Rafaela C Sanfelice is an academic researcher from Universidade Federal de Alfenas. The author has contributed to research in topics: Bacterial cellulose. The author has co-authored 1 publications.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a review explores recent advances on cellulose nanomaterials and composites applied in the fabrication of optical, electrical, electrochemical, and piezoelectric sensors for detecting analytes ranging from environmental pollutants to human physiological parameters.
Abstract: Sensors and biosensors play a key role as an analytical tool for the rapid, reliable, and early diagnosis of human diseases. Such devices can also be employed for monitoring environmental pollutants in air and water in an expedited way. More recently, nanomaterials have been proposed as an alternative in sensor fabrication to achieve gains in performance in terms of sensitivity, selectivity, and portability. In this direction, the use of cellulose nanomaterials (CNM), such as cellulose nanofibrils (CNF), cellulose nanocrystals (CNC), and bacterial cellulose (BC), has experienced rapid growth in the fabrication of varied types of sensors. The advantageous properties are related to the supramolecular structures that form the distinct CNM, their biocompatibility, and highly reactive functional groups that enable surface functionalization. The CNM can be applied as hydrogels and xerogels, thin films, nanopapers and other structures interesting for sensor design. Besides, CNM can be combined with other materials (e.g., nanoparticles, enzymes, carbon nanomaterials, etc.) and varied substrates to advanced sensors and biosensors fabrication. This review explores recent advances on CNM and composites applied in the fabrication of optical, electrical, electrochemical, and piezoelectric sensors for detecting analytes ranging from environmental pollutants to human physiological parameters. Emphasis is given to how cellulose nanomaterials can contribute to enhance the performance of varied sensors as well as expand novel sensing applications, which could not be easily achieved using standard materials. Finally, challenges and future trends on the use of cellulose-based materials in sensors and biosensors are also discussed.

51 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper , a facile one-pot method is proposed to prepare ionic conductive hydrogels by dissolving polyvinyl alcohol (PVA), cellulose nanofiber (CNF), and aluminum chloride hexahydrate (AlCl3·6H2O) in a dimethyl sulfoxide (DMSO)/water binary solvent.

41 citations

Journal ArticleDOI
01 Jun 2022-Gels
TL;DR: This review has reviewed and discussed the recent progress in the development of cellulose-based hydrogels and introduced their applications such as ionic conduction, thermal insulation, and drug delivery.
Abstract: In recent years, hydrogel-based research in biomedical engineering has attracted more attention. Cellulose-based hydrogels have become a research hotspot in the field of functional materials because of their outstanding characteristics such as excellent flexibility, stimulus-response, biocompatibility, and degradability. In addition, cellulose-based hydrogel materials exhibit excellent mechanical properties and designable functions through different preparation methods and structure designs, demonstrating huge development potential. In this review, we have systematically summarized sources and types of cellulose and the formation mechanism of the hydrogel. We have reviewed and discussed the recent progress in the development of cellulose-based hydrogels and introduced their applications such as ionic conduction, thermal insulation, and drug delivery. Also, we analyzed and highlighted the trends and opportunities for the further development of cellulose-based hydrogels as emerging materials in the future.

14 citations

Journal ArticleDOI
TL;DR: In this paper , a robust, elastic, and lightweight graphene/aramid nanofiber/polyaniline nanotube (rGO/ANF/PANIT) aerogel that is prepared by mixing graphene oxide (GO), ANF, and PANIT dispersions, followed by thermal treatment at 90 °C, freeze-drying, and a low-temperature annealing process.
Abstract: The preparation of graphene-based aerogels with excellent mechanical strength, elasticity, and compressibility is still a challenge. Herein, we demonstrate a robust, elastic, and lightweight graphene/aramid nanofiber/polyaniline nanotube (rGO/ANF/PANIT) aerogel that is prepared by mixing graphene oxide (GO), ANF, and PANIT dispersions, followed by thermal treatment at 90 °C, freeze-drying, and a low-temperature annealing process. The PANIT bonds the graphene sheets tightly, benefitting the formation of composite gels. The ANF tightly interconnects the graphene sheets and further reinforces the composite network framework significantly, hence endowing rGO/ANF/PANIT composite aerogels with robust mechanical property. The prepared aerogels present a low density of ∼12 mg cm-3, high conductivity, good resilience, and high compressibility. The rGO/ANF/PANIT aerogels as pressure sensors exhibit a high sensitivity of 1.73 kPa-1, low detection limit (40 Pa), wide detection range, and excellent compressive cycle stability, highlighting the promising applications in pressure-sensitive electrical devices, including medical health detection, wearable electronics, and intelligent packaging fields.

11 citations

Journal ArticleDOI
01 Oct 2022-Polymers
TL;DR: In this article , a review of recent progress and achievements made in the area of nanocellulose composites for chemical sensing applications is presented, which is intended to decrease response time by minimizing barriers to mass transport between an analyte and the indicator in the sensor.
Abstract: Chemical sensors are a rapidly developing technology that has received much attention in diverse industries such as military, medicine, environmental surveillance, automotive power and mobility, food manufacturing, infrastructure construction, product packaging and many more. The mass production of low-cost devices and components for use as chemical sensors is a major driving force for improvements in each of these industries. Recently, studies have found that using renewable and eco-friendly materials would be advantageous for both manufacturers and consumers. Thus, nanotechnology has led to the investigation of nanocellulose, an emerging and desirable bio-material for use as a chemical sensor. The inherent properties of nanocellulose, its high tensile strength, large specific surface area and good porous structure have many advantages in its use as a composite material for chemical sensors, intended to decrease response time by minimizing barriers to mass transport between an analyte and the immobilized indicator in the sensor. Besides which, the piezoelectric effect from aligned fibers in nanocellulose composites is beneficial for application in chemical sensors. Therefore, this review presents a discussion on recent progress and achievements made in the area of nanocellulose composites for chemical sensing applications. Important aspects regarding the preparation of nanocellulose composites using different functionalization with other compounds are also critically discussed in this review.

11 citations

Journal ArticleDOI
TL;DR: In this article , an immunosensor was developed to detect the cancer biomarker p53 antigen in MCF7 lysates using electrical impedance spectroscopy, and the immunosensing performance was optimized with a 3-bilayer matrix.
Abstract: Low-cost sensors to detect cancer biomarkers with high sensitivity and selectivity are essential for early diagnosis. Herein, an immunosensor was developed to detect the cancer biomarker p53 antigen in MCF7 lysates using electrical impedance spectroscopy. Interdigitated electrodes were screen printed on bacterial nanocellulose substrates, then coated with a matrix of layer-by-layer films of chitosan and chondroitin sulfate onto which a layer of anti-p53 antibodies was adsorbed. The immunosensing performance was optimized with a 3-bilayer matrix, with detection of p53 in MCF7 cell lysates at concentrations between 0.01 and 1000 Ucell. mL-1, and detection limit of 0.16 Ucell mL-1. The effective buildup of the immunosensor on bacterial nanocellulose was confirmed with polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS) and surface energy analysis. In spite of the high sensitivity, full selectivity with distinction of the p53-containing cell lysates and possible interferents required treating the data with a supervised machine learning approach based on decision trees. This allowed the creation of a multidimensional calibration space with 11 dimensions (frequencies used to generate decision tree rules), with which the classification of the p53-containing samples can be explained.

11 citations