scispace - formally typeset
Search or ask a question
Author

Raffaele Capasso

Bio: Raffaele Capasso is an academic researcher from University of Naples Federico II. The author has contributed to research in topics: Cannabinoid receptor & Medicine. The author has an hindex of 51, co-authored 201 publications receiving 8508 citations. Previous affiliations of Raffaele Capasso include University of Salerno & Isfahan University of Medical Sciences.


Papers
More filters
Journal ArticleDOI
TL;DR: Cannabidiol and Delta(9)-tetrahydrocannabivarin, a novel CB(1) antagonist which exerts potentially useful actions in the treatment of epilepsy and obesity are given special emphasis.

686 citations

Journal ArticleDOI
TL;DR: Silymarin has been used to treat alcoholic liver disease, acute and chronic viral hepatitis and toxin‐induced liver diseases, and may act as a toxin blockade agent by inhibiting binding of toxins to the hepatocyte cell membrane receptors.
Abstract: Silybum marianum or milk thistle (MT) is the most well-researched plant in the treatment of liver disease. The active complex of MT is a lipophilic extract from the seeds of the plant and is composed of three isomer flavonolignans (silybin, silydianin, and silychristin) collectively known as silymarin. Silybin is a component with the greatest degree of biological activity and makes up 50% to 70% of silymarin. Silymarin is found in the entire plant but it is concentrated in the fruit and seeds. Silymarin acts as an antioxidant by reducing free radical production and lipid peroxidation, has antifibrotic activity and may act as a toxin blockade agent by inhibiting binding of toxins to the hepatocyte cell membrane receptors. In animals, silymarin reduces liver injury caused by acetaminophen, carbon tetrachloride, radiation, iron overload, phenylhydrazine, alcohol, cold ischaemia and Amanita phalloides. Silymarin has been used to treat alcoholic liver disease, acute and chronic viral hepatitis and toxin-induced liver diseases.

437 citations

Journal ArticleDOI
30 Sep 2019
TL;DR: Examples of medicinal plants with antidiabetic potential are described, with focuses on preclinical and clinical studies.
Abstract: Diabetes mellitus is one of the major health problems in the world, the incidence and associated mortality are increasing. Inadequate regulation of the blood sugar imposes serious consequences for health. Conventional antidiabetic drugs are effective, however, also with unavoidable side effects. On the other hand, medicinal plants may act as an alternative source of antidiabetic agents. Examples of medicinal plants with antidiabetic potential are described, with focuses on preclinical and clinical studies. The beneficial potential of each plant matrix is given by the combined and concerted action of their profile of biologically active compounds.

299 citations

Journal ArticleDOI
TL;DR: An extensive review of the literature is performed, searching for the following keywords: metabolism, gut microbiota, dysbiosis, obesity, to report the current knowledge on the definition, composition, and functions of intestinal microbiota.
Abstract: Nowadays, obesity is one of the most prevalent human health problems. Research from the last 30 years has clarified the role of the imbalance between energy intake and expenditure, unhealthy lifestyle, and genetic variability in the development of obesity. More recently, the composition and metabolic functions of gut microbiota have been proposed as being able to affect obesity development. Here, we will report the current knowledge on the definition, composition, and functions of intestinal microbiota. We have performed an extensive review of the literature, searching for the following keywords: metabolism, gut microbiota, dysbiosis, obesity. There is evidence for the association between gut bacteria and obesity both in infancy and in adults. There are several genetic, metabolic, and inflammatory pathophysiological mechanisms involved in the interplay between gut microbes and obesity. Microbial changes in the human gut can be considered a factor involved in obesity development in humans. The modulation of the bacterial strains in the digestive tract can help to reshape the metabolic profile in the human obese host as suggested by several data from animal and human studies. Thus, a deep revision of the evidence pertaining to the use probiotics, prebiotics, and antibiotics in obese patients is conceivable

289 citations

Journal ArticleDOI
TL;DR: It is concluded that inflammation of the gut increases the potency of cannabinoid agonists possibly by ‘up‐regulating’ CB1 receptor expression; in addition, endocannabinoids, whose turnover is increased in inflamed gut, might tonically inhibit intestinal motility.
Abstract: 1. We have studied the effect of cannabinoid agonists (CP 55,940 and cannabinol) on intestinal motility in a model of intestinal inflammation (induced by oral croton oil in mice) and measured cannabinoid receptor expression, endocannabinoids (anandamide and 2-arachidonylglycerol) and anandamide amidohydrolase activity both in physiological and pathophysiological states. 2. CP 55,940 (0.03 - 10 nmol mouse(-1)) and cannabinol (10 - 3000 nmol mouse(-1)) were more active in delaying intestinal motility in croton oil-treated mice than in control mice. These inhibitory effects were counteracted by the selective cannabinoid CB(1) receptor antagonist SR141716A (16 nmol mouse(-1)). SR141716A (1 - 300 nmol mouse(-1)), administered alone, increased intestinal motility to the same extent in both control and croton oil-treated mice. 3. Croton oil-induced intestinal inflammation was associated with an increased expression of CB(1) receptor, an unprecedented example of up-regulation of cannabinoid receptors during inflammation. 4. High levels of anandamide and 2-arachidonylglycerol were detected in the small intestine, although no differences were observed between control and croton oil-treated mice; by contrast anandamide amidohydrolase activity increased 2 fold in the inflamed small intestine. 5. It is concluded that inflammation of the gut increases the potency of cannabinoid agonists possibly by 'up-regulating' CB(1) receptor expression; in addition, endocannabinoids, whose turnover is increased in inflamed gut, might tonically inhibit intestinal motility.

251 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review covers the literature published in 2014 for marine natural products, with 1116 citations referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms.

4,649 citations

Journal ArticleDOI
24 Dec 2004-Science

1,949 citations

Journal ArticleDOI
TL;DR: A comprehensive overview on the current state of knowledge of the endocannabinoid system as a target of pharmacotherapy is provided.
Abstract: The recent identification of cannabinoid receptors and their endogenous lipid ligands has triggered an exponential growth of studies exploring the endocannabinoid system and its regulatory functions in health and disease. Such studies have been greatly facilitated by the introduction of selective cannabinoid receptor antagonists and inhibitors of endocannabinoid metabolism and transport, as well as mice deficient in cannabinoid receptors or the endocannabinoid-degrading enzyme fatty acid amidohydrolase. In the past decade, the endocannabinoid system has been implicated in a growing number of physiological functions, both in the central and peripheral nervous systems and in peripheral organs. More importantly, modulating the activity of the endocannabinoid system turned out to hold therapeutic promise in a wide range of disparate diseases and pathological conditions, ranging from mood and anxiety disorders, movement disorders such as Parkinson9s and Huntington9s disease, neuropathic pain, multiple sclerosis and spinal cord injury, to cancer, atherosclerosis, myocardial infarction, stroke, hypertension, glaucoma, obesity/metabolic syndrome, and osteoporosis, to name just a few. An impediment to the development of cannabinoid medications has been the socially unacceptable psychoactive properties of plant-derived or synthetic agonists, mediated by CB 1 receptors. However, this problem does not arise when the therapeutic aim is achieved by treatment with a CB 1 receptor antagonist, such as in obesity, and may also be absent when the action of endocannabinoids is enhanced indirectly through blocking their metabolism or transport. The use of selective CB 2 receptor agonists, which lack psychoactive properties, could represent another promising avenue for certain conditions. The abuse potential of plant-derived cannabinoids may also be limited through the use of preparations with controlled composition and the careful selection of dose and route of administration. The growing number of preclinical studies and clinical trials with compounds that modulate the endocannabinoid system will probably result in novel therapeutic approaches in a number of diseases for which current treatments do not fully address the patients9 need. Here, we provide a comprehensive overview on the current state of knowledge of the endocannabinoid system as a target of pharmacotherapy.

1,857 citations

Journal ArticleDOI
TL;DR: Although all the evidence from research on green tea is very promising, future studies are necessary to fully understand its contributions to human health, and advise its regular consumption in Western diets, in which green tea consumption is nowadays limited and sporadic.
Abstract: Tea is the most consumed drink in the world after water. Green tea is a 'non-fermented' tea, and contains more catechins, than black tea or oolong tea. Catechins are in vitro and in vivo strong antioxidants. In addition, its content of certain minerals and vitamins increases the antioxidant potential of this type of tea. Since ancient times, green tea has been considered by the traditional Chinese medicine as a healthful beverage. Recent human studies suggest that green tea may contribute to a reduction in the risk of cardiovascular disease and some forms of cancer, as well as to the promotion of oral health and other physiological functions such as anti-hypertensive effect, body weight control, antibacterial and antivirasic activity, solar ultraviolet protection, bone mineral density increase, anti-fibrotic properties, and neuroprotective power. Increasing interest in its health benefits has led to the inclusion of green tea in the group of beverages with functional properties. However, although all the evidence from research on green tea is very promising, future studies are necessary to fully understand its contributions to human health, and advise its regular consumption in Western diets, in which green tea consumption is nowadays limited and sporadic.

1,732 citations

Journal ArticleDOI
TL;DR: This review focuses on the manner with which three of these compounds, (−)‐trans‐Δ 9‐tetrahydrocannabinol (Δ9‐THC), (−]‐cannabidiol (CBD) and (−)-trans‐ Δ9‐TetrahYDrocannabivarin (Γ‐THCV), interact with cannabinoid CB1 and CB2 receptors.
Abstract: Cannabis sativa is the source of a unique set of compounds known collectively as plant cannabinoids or phytocannabinoids. This review focuses on the manner with which three of these compounds, (-)-trans-delta9-tetrahydrocannabinol (delta9-THC), (-)-cannabidiol (CBD) and (-)-trans-delta9-tetrahydrocannabivarin (delta9-THCV), interact with cannabinoid CB1 and CB2 receptors. Delta9-THC, the main psychotropic constituent of cannabis, is a CB1 and CB2 receptor partial agonist and in line with classical pharmacology, the responses it elicits appear to be strongly influenced both by the expression level and signalling efficiency of cannabinoid receptors and by ongoing endogenous cannabinoid release. CBD displays unexpectedly high potency as an antagonist of CB1/CB2 receptor agonists in CB1- and CB2-expressing cells or tissues, the manner with which it interacts with CB2 receptors providing a possible explanation for its ability to inhibit evoked immune cell migration. Delta9-THCV behaves as a potent CB2 receptor partial agonist in vitro. In contrast, it antagonizes cannabinoid receptor agonists in CB1-expressing tissues. This it does with relatively high potency and in a manner that is both tissue and ligand dependent. Delta9-THCV also interacts with CB1 receptors when administered in vivo, behaving either as a CB1 antagonist or, at higher doses, as a CB1 receptor agonist. Brief mention is also made in this review, first of the production by delta9-THC of pharmacodynamic tolerance, second of current knowledge about the extent to which delta9-THC, CBD and delta9-THCV interact with pharmacological targets other than CB1 or CB2 receptors, and third of actual and potential therapeutic applications for each of these cannabinoids.

1,492 citations