scispace - formally typeset
Search or ask a question
Author

Raffaele Ferrari

Bio: Raffaele Ferrari is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Mixed layer & Geostrophic wind. The author has an hindex of 57, co-authored 134 publications receiving 10459 citations. Previous affiliations of Raffaele Ferrari include Woods Hole Oceanographic Institution & Scripps Institution of Oceanography.


Papers
More filters
Journal ArticleDOI
TL;DR: In particular, small-scale mixing processes are necessary to resupply the potential energy removed in the interior by the overturning and eddy-generating process as discussed by the authors, and it is shown that over most of the ocean significant vertical mixing is confined to topographically complex boundary areas implies a potentially radically different interior circulation than is possible with uniform mixing.
Abstract: ▪ AbstractThe coexistence in the deep ocean of a finite, stable stratification, a strong meridional overturning circulation, and mesoscale eddies raises complex questions concerning the circulation energetics. In particular, small-scale mixing processes are necessary to resupply the potential energy removed in the interior by the overturning and eddy-generating process. A number of lines of evidence, none complete, suggest that the oceanic general circulation, far from being a heat engine, is almost wholly governed by the forcing of the wind field and secondarily by deep water tides. In detail however, the budget of mechanical energy input into the ocean is poorly constrained. The now inescapable conclusion that over most of the ocean significant “vertical” mixing is confined to topographically complex boundary areas implies a potentially radically different interior circulation than is possible with uniform mixing. Whether ocean circulation models, either simple box or full numerical ones, neither explic...

1,356 citations

Journal ArticleDOI
TL;DR: In this paper, the authors focus on the physically different kinetic energy (KE) reservoirs of the circulation and their maintenance, dissipation, and possible influence on the very small scales representing irreversible molecular mixing.
Abstract: The ocean circulation is a cause and consequence of fluid scale interactions ranging from millimeters to more than 10,000 km. Although the wind field produces a large energy input to the ocean, all but approximately 10% appears to be dissipated within about 100 m of the sea surface, rendering observations of the energy divergence necessary to maintain the full water-column flow difficult. Attention thus shifts to the physically different kinetic energy (KE) reservoirs of the circulation and their maintenance, dissipation, and possible influence on the very small scales representing irreversible molecular mixing. Oceanic KE is dominated by the geostrophic eddy field, and depending on the vertical structure (barotropic versus low-mode baroclinic), direct and inverse energy cascades are possible. The pathways toward dissipation of the dominant geostrophic eddy KE depend crucially on the direction of the cascade but are difficult to quantify because of serious observational difficulties for wavelengths shorte...

755 citations

Journal ArticleDOI
TL;DR: In this paper, an overturning stream function is proposed to tilting isopycnals from the vertical to the horizontal, which is proportional to the product of the horizontal density gradient, the mixed layer depth squared, and the inertial period.
Abstract: Ageostrophic baroclinic instabilities develop within the surface mixed layer of the ocean at horizontal fronts and efficiently restratify the upper ocean. In this paper a parameterization for the restratification driven by finite-amplitude baroclinic instabilities of the mixed layer is proposed in terms of an overturning streamfunction that tilts isopycnals from the vertical to the horizontal. The streamfunction is proportional to the product of the horizontal density gradient, the mixed layer depth squared, and the inertial period. Hence restratification proceeds faster at strong fronts in deep mixed layers with a weak latitude dependence. In this paper the parameterization is theoretically motivated, confirmed to perform well for a wide range of mixed layer depths, rotation rates, and vertical and horizontal stratifications. It is shown to be superior to alternative extant parameterizations of baroclinic instability for the problem of mixed layer restratification. Two companion papers discuss the numerical implementation and the climate impacts of this parameterization.

591 citations

Journal ArticleDOI
TL;DR: In this article, the authors studied the restratification of the oceanic surface mixed layer that results from lateral gradients in the surface density field, which are referred to as mixed layer instabilities.
Abstract: The restratification of the oceanic surface mixed layer that results from lateral gradients in the surface density field is studied. The lateral gradients are shown to be unstable to ageostrophic baroclinic instabilities and slump from the horizontal to the vertical. These instabilities, which are referred to as mixed layer instabilities (MLIs), differ from instabilities in the ocean interior because of the weak surface stratification. Spatial scales are O(1–10) km, and growth time scales are on the order of a day. Linear stability analysis and fully nonlinear simulations are used to study MLIs and their impact on mixed layer restratification. The main result is that MLIs are a leading-order process in the ML heat budget acting to constantly restratify the surface ocean. Climate and regional ocean models do not resolve the scales associated with MLIs and are likely to underestimate the rate of ML restratification and consequently suffer from a bias in sea surface temperatures and ML depths. In a ...

540 citations

Journal ArticleDOI
TL;DR: A review of the physical-chemical-biological dynamics of submesoscale frontal dynamics can be found in this article, where the authors discuss strategies for sampling them and present a critical overview of current knowledge.
Abstract: A common dynamical paradigm is that turbulence in the upper ocean is dominated by three classes of motion: mesoscale geostrophic eddies, internal waves and microscale three-dimensional turbulence. Close to the ocean surface, however, a fourth class of turbulent motion is important: submesoscale frontal dynamics. These have a horizontal scale of O(1–10) km, a vertical scale of O(100) m, and a time scale of O(1) day. Here we review the physical-chemical-biological dynamics of submesoscale features, and discuss strategies for sampling them. Submesoscale fronts arise dynamically through nonlinear instabilities of the mesoscale currents. They are ephemeral, lasting only a few days after they are formed. Strong submesoscale vertical velocities can drive episodic nutrient pulses to the euphotic zone, and subduct organic carbon into the ocean's interior. The reduction of vertical mixing at submesoscale fronts can locally increase the mean time that photosynthetic organisms spend in the well-lit euphotic layer and promote primary production. Horizontal stirring can create intense patchiness in planktonic species. Submesoscale dynamics therefore can change not only primary and export production, but also the structure and the functioning of the planktonic ecosystem. Because of their short time and space scales, sampling of submesoscale features requires new technologies and approaches. This paper presents a critical overview of current knowledge to focus attention and hopefully interest on the pressing scientific questions concerning these dynamics.

372 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The fourth version of the Community Climate System Model (CCSM4) was recently completed and released to the climate community as mentioned in this paper, which describes developments to all CCSM components, and documents fully coupled preindustrial control runs compared to the previous version.
Abstract: The fourth version of the Community Climate System Model (CCSM4) was recently completed and released to the climate community. This paper describes developments to all CCSM components, and documents fully coupled preindustrial control runs compared to the previous version, CCSM3. Using the standard atmosphere and land resolution of 1° results in the sea surface temperature biases in the major upwelling regions being comparable to the 1.4°-resolution CCSM3. Two changes to the deep convection scheme in the atmosphere component result in CCSM4 producing El Nino–Southern Oscillation variability with a much more realistic frequency distribution than in CCSM3, although the amplitude is too large compared to observations. These changes also improve the Madden–Julian oscillation and the frequency distribution of tropical precipitation. A new overflow parameterization in the ocean component leads to an improved simulation of the Gulf Stream path and the North Atlantic Ocean meridional overturning circulati...

2,835 citations

Journal ArticleDOI
TL;DR: In this paper, the characteristics of tropical cyclones have changed or will change in a warming climate and if so, how, has been the subject of considerable investigation, often with conflicting results.
Abstract: Whether the characteristics of tropical cyclones have altered, or will alter, in a changing climate has been subject of considerable debate. An overview of recent research indicates that greenhouse warming will cause stronger storms, on average, but a decrease in the frequency of tropical cyclones. Whether the characteristics of tropical cyclones have changed or will change in a warming climate — and if so, how — has been the subject of considerable investigation, often with conflicting results. Large amplitude fluctuations in the frequency and intensity of tropical cyclones greatly complicate both the detection of long-term trends and their attribution to rising levels of atmospheric greenhouse gases. Trend detection is further impeded by substantial limitations in the availability and quality of global historical records of tropical cyclones. Therefore, it remains uncertain whether past changes in tropical cyclone activity have exceeded the variability expected from natural causes. However, future projections based on theory and high-resolution dynamical models consistently indicate that greenhouse warming will cause the globally averaged intensity of tropical cyclones to shift towards stronger storms, with intensity increases of 2–11% by 2100. Existing modelling studies also consistently project decreases in the globally averaged frequency of tropical cyclones, by 6–34%. Balanced against this, higher resolution modelling studies typically project substantial increases in the frequency of the most intense cyclones, and increases of the order of 20% in the precipitation rate within 100 km of the storm centre. For all cyclone parameters, projected changes for individual basins show large variations between different modelling studies.

2,368 citations

Journal ArticleDOI
TL;DR: In this paper, a 2° resolution global climatology of the mixed layer depth (MLD) based on individual profiles is constructed and a new global seasonal estimation of barrier layer thickness is also provided.
Abstract: [1] A new 2° resolution global climatology of the mixed layer depth (MLD) based on individual profiles is constructed. Previous global climatologies have been based on temperature or density-gridded climatologies. The criterion selected is a threshold value of temperature or density from a near-surface value at 10 m depth (ΔT = 0.2°C or Δσθ = 0.03 kg m−3). A validation of the temperature criterion on moored time series data shows that the method is successful at following the base of the mixed layer. In particular, the first spring restratification is better captured than with a more commonly used larger criteria. In addition, we show that for a given 0.2°C criterion, the MLD estimated from averaged profiles results in a shallow bias of 25% compared to the MLD estimated from individual profiles. A new global seasonal estimation of barrier layer thickness is also provided. An interesting result is the prevalence in mid- and high-latitude winter hemispheres of vertically density-compensated layers, creating an isopycnal but not mixed layer. Consequently, we propose an optimal estimate of MLD based on both temperature and density data. An independent validation of the maximum annual MLD with oxygen data shows that this oxygen estimate may be biased in regions of Ekman pumping or strong biological activity. Significant differences are shown compared to previous climatologies. The timing of the seasonal cycle of the mixed layer is shifted earlier in the year, and the maximum MLD captures finer structures and is shallower. These results are discussed in light of the different approaches and the choice of criterion.

2,345 citations

Journal ArticleDOI
TL;DR: The Community Earth System Model (CESM) as discussed by the authors is a community tool used to investigate a diverse set of Earth system interactions across multiple time and space scales, including biogeochemical cycles, a variety of atmospheric chemistry options, the Greenland Ice Sheet, and an atmosphere that extends to the lower thermosphere.
Abstract: The Community Earth System Model (CESM) is a flexible and extensible community tool used to investigate a diverse set of Earth system interactions across multiple time and space scales. This global coupled model significantly extends its predecessor, the Community Climate System Model, by incorporating new Earth system simulation capabilities. These comprise the ability to simulate biogeochemical cycles, including those of carbon and nitrogen, a variety of atmospheric chemistry options, the Greenland Ice Sheet, and an atmosphere that extends to the lower thermosphere. These and other new model capabilities are enabling investigations into a wide range of pressing scientific questions, providing new foresight into possible future climates and increasing our collective knowledge about the behavior and interactions of the Earth system. Simulations with numerous configurations of the CESM have been provided to phase 5 of the Coupled Model Intercomparison Project (CMIP5) and are being analyzed by the broad com...

2,075 citations

Journal ArticleDOI
TL;DR: In this paper, an automated procedure for identifying and tracking mesoscale features based on their SSH signatures yields 35,891 eddies with average lifetime of 32 weeks and an average propagation distance of 550 km.

1,744 citations