scispace - formally typeset
Search or ask a question
Author

Raffaella Di Sante

Bio: Raffaella Di Sante is an academic researcher from University of Bologna. The author has contributed to research in topics: Computer science & Optical fiber. The author has an hindex of 3, co-authored 4 publications receiving 346 citations.

Papers
More filters
Journal ArticleDOI
30 Jul 2015-Sensors
TL;DR: Recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques.
Abstract: In-service structural health monitoring of composite aircraft structures plays a key role in the assessment of their performance and integrity. In recent years, Fibre Optic Sensors (FOS) have proved to be a potentially excellent technique for real-time in-situ monitoring of these structures due to their numerous advantages, such as immunity to electromagnetic interference, small size, light weight, durability, and high bandwidth, which allows a great number of sensors to operate in the same system, and the possibility to be integrated within the material. However, more effort is still needed to bring the technology to a fully mature readiness level. In this paper, recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques.

461 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated issues for an efficient and reliable embedding and use of Fiber Bragg Grating (FBG) sensors for strain monitoring of composite structures with particular regard to the manufacturing process of components in the nautical field by means of the vacuum bag technique in autoclave.
Abstract: This work investigated issues for an efficient and reliable embedding and use of Fiber Bragg Grating (FBG) sensors for strain monitoring of composite structures with particular regard to the manufacturing process of components in the nautical field by means of the vacuum bag technique in autoclave. CFRP material laminates with embedded FBGs were produced and the effect of the curing process parameters on the light transmission characteristics of the optical fibers was initially investigated. Two different types of coating, namely polyimide and acrylate, were tested by measuring the light attenuation by an Optical Time Domain Reflectometer. Tensile specimens were subsequently extracted from the laminas and instrumented also with a surface-mounted conventional electrical strain gage (SG). Comparison between the FBG and SG measurements during static tensile tests allowed the evaluation of the strain monitoring capability of the FBGs, in particular of their sensitivity (i.e., gage factor) when embedded.

16 citations

Journal ArticleDOI
26 Jan 2022-Sensors
TL;DR: In this article , a case study representative of the automotive field is analyzed and discussed, where an SMT methodology is applied to evaluate the modal properties of a reinforced composite roof belonging to a racing solar powered vehicle.
Abstract: Strain Modal Testing (SMT), based on strain sensors signal processing, is an unconventional approach to perform Experimental Modal Analysis which is typically based on data measured by accelerometers. SMT is still mainly restricted to academia and requires additional investigation for a successful transition towards industry. This paper critically reviews why the automotive sector can benefit from this relatively new approach for a variety of reasons. Moreover, a case study representative of the automotive field is analyzed and discussed. Specifically, an SMT methodology is applied to evaluate the modal properties of a reinforced composite roof belonging to a racing solar powered vehicle. In the experimental activity, signals from Fiber Bragg Grating (FBG) sensors, strain gauges, and accelerometers were simultaneously acquired and further processed. The advantages of using optical fibers were discussed, together with their weaknesses and ongoing challenges. The FBG results were compared with the conventional analysis performed with the accelerometers, emphasizing the main similarities and discrepancies.

10 citations

Journal ArticleDOI
TL;DR: In this paper , a convolutional neural network (CNN) based approach was proposed for the delamination prediction in CFRP double cantilever beam (DCB) specimens using raw local array strain measurements via distributed optical fiber sensors.
Abstract: Machine learning (ML) methods for the structural health monitoring (SHM) of composite structures rely on sufficient domain knowledge as they typically demand to extract damage-sensitive features from raw data before training the ML model. In practice, prior knowledge is not available in most cases. Deep learning (DL) methods, on the other hand, can obtain higher-level features from raw input data and have proven superior in several applications. This paper proposes a Convolutional Neural Network (CNN) based approach for the delamination prediction in CFRP double cantilever beam (DCB) specimens using raw local array strain measurements via distributed optical fiber sensors. The conventional CNN architecture is modified to perform regression, as the delamination size is a continuous value. 1D and 2D CNN architectures are deployed and compared and different techniques are exploited to encode 1D spatial strain pattern series as 2D images. Raw strain patterns collected during static testing are used to train the CNNs, while testing is performed on unseen raw fatigue strain patterns, showing the CNN ability to automatically extract discriminative features from the non-pre-processed static strain pattern-based signals that generalize to raw fatigue signals as well. This strategy has the potential to reduce fatigue testing expenditures while also shortening the time required to gather training data.

7 citations

Proceedings ArticleDOI
20 May 2013
TL;DR: In this paper, a high-performance optical low-coherence reflectometer (OLCR) has been used to estimate the optical losses in optical fibers and fiber Bragg sensors embedded into CFRP material samples.
Abstract: In this work a high-performance optical low-coherence reflectometer (OLCR) has been used to estimate the optical losses in optical fibers and fiber Bragg grating sensors embedded into CFRP material samples. An ASE tunable narrowband light source coupled to a Michelson interferometer allowed the high spatial resolution localization of both the concentrated and the distributed loss for different fiber coatings and type. In particular, acrylate- and polyimidecoated fibers and bend-insensitive fibers were tested. By using the OLCR it was possible to locate and identify the sources of optical loss introduced by the CFRP manufacturing process, therefore obtaining useful information on the efficiency of the embedding process.

3 citations


Cited by
More filters
Journal ArticleDOI
30 Jul 2015-Sensors
TL;DR: Recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques.
Abstract: In-service structural health monitoring of composite aircraft structures plays a key role in the assessment of their performance and integrity. In recent years, Fibre Optic Sensors (FOS) have proved to be a potentially excellent technique for real-time in-situ monitoring of these structures due to their numerous advantages, such as immunity to electromagnetic interference, small size, light weight, durability, and high bandwidth, which allows a great number of sensors to operate in the same system, and the possibility to be integrated within the material. However, more effort is still needed to bring the technology to a fully mature readiness level. In this paper, recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques.

461 citations

Journal ArticleDOI
15 Sep 2018-Sensors
TL;DR: Some advanced applications and key sectors of the global fibre-optic strain sensors market are envisaged, as well as the main market players acting in this field.
Abstract: Fibre Bragg grating (FBG) strain sensors are not only a very well-established research field, but they are also acquiring a bigger market share due to their sensitivity and low costs In this paper we review FBG strain sensors with high focus on the underlying physical principles, the interrogation, and the read-out techniques Particular emphasis is given to recent advances in highly-performing, single head FBG, a category FBG strain sensors belong to Different sensing schemes are described, including FBG strain sensors based on mode splitting Their operation principle and performance are reported and compared with the conventional architectures In conclusion, some advanced applications and key sectors the global fibre-optic strain sensors market are envisaged, as well as the main market players acting in this field

280 citations

Journal ArticleDOI
28 Jan 2019-Sensors
TL;DR: The requirements for practical implementation and use of structural health monitoring systems in aircraft application, state-of-the-art techniques for solving some practical issues, such as sensor network integration, scalability to large structures, reliability and effect of environmental conditions, robust damage detection and quantification are discussed.
Abstract: Structural health monitoring (SHM) is being widely evaluated by the aerospace industry as a method to improve the safety and reliability of aircraft structures and also reduce operational cost. Built-in sensor networks on an aircraft structure can provide crucial information regarding the condition, damage state and/or service environment of the structure. Among the various types of transducers used for SHM, piezoelectric materials are widely used because they can be employed as either actuators or sensors due to their piezoelectric effect and vice versa. This paper provides a brief overview of piezoelectric transducer-based SHM system technology developed for aircraft applications in the past two decades. The requirements for practical implementation and use of structural health monitoring systems in aircraft application are then introduced. State-of-the-art techniques for solving some practical issues, such as sensor network integration, scalability to large structures, reliability and effect of environmental conditions, robust damage detection and quantification are discussed. Development trend of SHM technology is also discussed.

255 citations

Journal ArticleDOI
15 Jan 2016-Sensors
TL;DR: An overview of the different types of FOS used for strain/temperature sensing in composite materials and their compatibility with and suitability for embedding inside a composite material is presented.
Abstract: This paper provides an overview of the different types of fiber optic sensors (FOS) that can be used with composite materials and also their compatibility with and suitability for embedding inside a composite material. An overview of the different types of FOS used for strain/temperature sensing in composite materials is presented. Recent trends, and future challenges for FOS technology for condition monitoring in smart composite materials are also discussed. This comprehensive review provides essential information for the smart materials industry in selecting of appropriate types of FOS in accordance with end-user requirements.

252 citations

Journal ArticleDOI
TL;DR: In this article, the optical fiber sensors employed in environmental monitoring are summarized for understanding of their sensing principles and fabrication processes, followed by discussion on the potentials of OFS in manufacturing.
Abstract: Environmental monitoring has become essential in order to deal with environmental resources efficiently and safely in the realm of green technology. Environmental monitoring sensors are required for detection of environmental changes in industrial facilities under harsh conditions, (e.g. underground or subsea pipelines) in both the temporal and spatial domains. The utilization of optical fiber sensors is a promising scheme for environmental monitoring of this kind, owing to advantages including resistance to electromagnetic interference, durability under extreme temperatures and pressures, high transmission rate, light weight, small size, and flexibility. In this paper, the optical fiber sensors employed in environmental monitoring are summarized for understanding of their sensing principles and fabrication processes. Numerous specific applications in petroleum engineering, civil engineering, and agricultural engineering are explored, followed by discussion on the potentials of OFS in manufacturing.

236 citations