scispace - formally typeset
Search or ask a question
Author

Rafidah Md Noor

Bio: Rafidah Md Noor is an academic researcher from Information Technology University. The author has contributed to research in topics: Vehicular ad hoc network & Routing protocol. The author has an hindex of 24, co-authored 159 publications receiving 1784 citations. Previous affiliations of Rafidah Md Noor include Universiti Malaysia Sabah & University of Malaya.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper focuses on the integral aspects of the CoR and SWIPT to other next-generation wireless communication systems and techniques such as multiple-input-multiple-output, wireless sensor network, cognitive radio, vehicular ad hoc network, non-orthogonal multiple access, beamforming technique, and the Internet of Things.
Abstract: The integration of simultaneous wireless information and power transfer (SWIPT) and cooperative relay (CoR) techniques has evolved as a new phenomenon for the next-generation wireless communication system. CoR is used to get energy and spectral efficient network and to solve the issues of fading, path loss, shadowing, and smaller coverage area. Relay nodes are battery-constrained or battery-less devices. They need some charging systems externally as replacing or recharging of their batteries sometimes which are not feasible and convenient. Energy harvesting (EH) is the most cost-effective, suitable, and safer solutions to power up these relays. Among various types of the EH, SWIPT is the most prominent technique as it provides spectral efficiency by delivering energy and information to the relays at the same time. This paper reviews the combination of CoR and SWIPT. From basic to advanced architectures, applications and taxonomies of CoR and SWIPT are presented, various forms of resource allocation and relay selection algorithms are covered. The usage of CoR and SWIPT in the fifth-generation wireless networks is discussed. This paper focuses on the integral aspects of the CoR and SWIPT to other next-generation wireless communication systems and techniques such as multiple-input-multiple-output, wireless sensor network, cognitive radio, vehicular ad hoc network, non-orthogonal multiple access, beamforming technique, and the Internet of Things. Some open issues and future directions and challenges are given in this paper.

109 citations

Journal ArticleDOI
TL;DR: The aim of the study is to help the future researcher by providing security issues, open challenges and future scopes in IoT authentication by highlighting enormous attacks and technical methods on the IoT authentication mechanism.
Abstract: Internet of things (IoT) is considered as a collection of heterogeneous devices, such as sensors, Radio-frequency identification (RFID) and actuators, which form a huge network, enabling non-internet components in the network to produce a better world of services, like smart home, smart city, smart transportation, and smart industries. On the other hand, security and privacy are the most important aspects of the IoT network, which includes authentication, authorization, data protection, network security, and access control. Additionally, traditional network security cannot be directly used in IoT networks due to its limitations on computational capabilities and storage capacities. Furthermore, authentication is the mainstay of the IoT network, as all components undergo an authentication process before establishing communication. Therefore, securing authentication is essential. In this paper, we have focused on IoT security particularly on their authentication mechanisms. Consequently, we highlighted enormous attacks and technical methods on the IoT authentication mechanism. Additionally, we discussed existing security verification techniques and evaluation schemes of IoT authentication. Furthermore, analysis against current existing protocols have been discussed in all parts and provided some recommendation. Finally, the aim of our study is to help the future researcher by providing security issues, open challenges and future scopes in IoT authentication.

86 citations

Journal ArticleDOI
TL;DR: The anatomy and the performance requirements of beaconing are explored, and a survey of the state of the art is conducted with an emphasis on the salient features of the beaconing approaches.
Abstract: Vehicular communication requires vehicles to self-organize through the exchange of periodic beacons. Recent analysis on beaconing indicates that the standards for beaconing restrict the desired performance of vehicular applications. This situation can be attributed to the quality of the available transmission medium, persistent change in the traffic situation and the inability of standards to cope with application requirements. To this end, this paper is motivated by the classifications and capability evaluations of existing adaptive beaconing approaches. To begin with, we explore the anatomy and the performance requirements of beaconing. Then, the beaconing design is analyzed to introduce a design-based beaconing taxonomy. A survey of the state of the art is conducted with an emphasis on the salient features of the beaconing approaches. We also evaluate the capabilities of beaconing approaches using several key parameters. A comparison among beaconing approaches is presented, which is based on the architectural and implementation characteristics. The paper concludes by discussing open challenges in the field.

85 citations

Journal ArticleDOI
TL;DR: Current state-of-the-art cloud resource allocation schemes are extensively reviewed to highlight their strengths and weaknesses and a thematic taxonomy is presented based on resource allocation optimization objectives to classify the existing literature.
Abstract: Cloud computing has emerged as a popular computing model to process data and execute computationally intensive applications in a pay-as-you-go manner Due to the ever-increasing demand for cloud-based applications, it is becoming difficult to efficiently allocate resources according to user requests while satisfying the service-level agreement between service providers and consumers Furthermore, cloud resource heterogeneity, the unpredictable nature of workload, and the diversified objectives of cloud actors further complicate resource allocation in the cloud computing environment Consequently, both the industry and academia have commenced substantial research efforts to efficiently handle the aforementioned multifaceted challenges with cloud resource allocation The lack of a comprehensive review covering the resource allocation aspects of optimization objectives, design approaches, optimization methods, target resources, and instance types has motivated a review of existing cloud resource allocation schemes In this paper, current state-of-the-art cloud resource allocation schemes are extensively reviewed to highlight their strengths and weaknesses Moreover, a thematic taxonomy is presented based on resource allocation optimization objectives to classify the existing literature The cloud resource allocation schemes are analyzed based on the thematic taxonomy to highlight the commonalities and deviations among them Finally, several opportunities are suggested for the design of optimal resource allocation schemes

74 citations

Journal ArticleDOI
19 Dec 2019-Sensors
TL;DR: This paper presents a comprehensive survey of the limited research work of routing schemes in FANETs, covering different aspects, including objectives, challenges, routing metrics, characteristics, and performance measures.
Abstract: Flying ad hoc network (FANET) is a self-organizing wireless network that enables inexpensive, flexible, and easy-to-deploy flying nodes, such as unmanned aerial vehicles (UAVs), to communicate among themselves in the absence of fixed network infrastructure. FANET is one of the emerging networks that has an extensive range of next-generation applications. Hence, FANET plays a significant role in achieving application-based goals. Routing enables the flying nodes to collaborate and coordinate among themselves and to establish routes to radio access infrastructure, particularly FANET base station (BS). With a longer route lifetime, the effects of link disconnections and network partitions reduce. Routing must cater to two main characteristics of FANETs that reduce the route lifetime. Firstly, the collaboration nature requires the flying nodes to exchange messages and to coordinate among themselves, causing high energy consumption. Secondly, the mobility pattern of the flying nodes is highly dynamic in a three-dimensional space and they may be spaced far apart, causing link disconnection. In this paper, we present a comprehensive survey of the limited research work of routing schemes in FANETs. Different aspects, including objectives, challenges, routing metrics, characteristics, and performance measures, are covered. Furthermore, we present open issues.

64 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

01 Dec 1971

979 citations

Journal ArticleDOI
TL;DR: This paper presents a comprehensive discussion on state-of-the-art big data technologies based on batch and stream data processing based on structuralism and functionalism paradigms and strengths and weaknesses of these technologies are analyzed.

964 citations

Journal ArticleDOI
TL;DR: This survey delineates the limitations, give insights, research challenges and future opportunities to advance ML in networking, and jointly presents the application of diverse ML techniques in various key areas of networking across different network technologies.
Abstract: Machine Learning (ML) has been enjoying an unprecedented surge in applications that solve problems and enable automation in diverse domains. Primarily, this is due to the explosion in the availability of data, significant improvements in ML techniques, and advancement in computing capabilities. Undoubtedly, ML has been applied to various mundane and complex problems arising in network operation and management. There are various surveys on ML for specific areas in networking or for specific network technologies. This survey is original, since it jointly presents the application of diverse ML techniques in various key areas of networking across different network technologies. In this way, readers will benefit from a comprehensive discussion on the different learning paradigms and ML techniques applied to fundamental problems in networking, including traffic prediction, routing and classification, congestion control, resource and fault management, QoS and QoE management, and network security. Furthermore, this survey delineates the limitations, give insights, research challenges and future opportunities to advance ML in networking. Therefore, this is a timely contribution of the implications of ML for networking, that is pushing the barriers of autonomic network operation and management.

677 citations

Journal ArticleDOI
TL;DR: This paper is the first to present the state-of-the-art of the SAGIN since existing survey papers focused on either only one single network segment in space or air, or the integration of space-ground, neglecting the Integration of all the three network segments.
Abstract: Space-air-ground integrated network (SAGIN), as an integration of satellite systems, aerial networks, and terrestrial communications, has been becoming an emerging architecture and attracted intensive research interest during the past years. Besides bringing significant benefits for various practical services and applications, SAGIN is also facing many unprecedented challenges due to its specific characteristics, such as heterogeneity, self-organization, and time-variability. Compared to traditional ground or satellite networks, SAGIN is affected by the limited and unbalanced network resources in all three network segments, so that it is difficult to obtain the best performances for traffic delivery. Therefore, the system integration, protocol optimization, resource management, and allocation in SAGIN is of great significance. To the best of our knowledge, we are the first to present the state-of-the-art of the SAGIN since existing survey papers focused on either only one single network segment in space or air, or the integration of space-ground, neglecting the integration of all the three network segments. In light of this, we present in this paper a comprehensive review of recent research works concerning SAGIN from network design and resource allocation to performance analysis and optimization. After discussing several existing network architectures, we also point out some technology challenges and future directions.

661 citations