scispace - formally typeset
Search or ask a question
Author

Raghunathan Rengaswamy

Bio: Raghunathan Rengaswamy is an academic researcher from Indian Institute of Technology Madras. The author has contributed to research in topics: Proton exchange membrane fuel cell & Fault detection and isolation. The author has an hindex of 39, co-authored 210 publications receiving 9632 citations. Previous affiliations of Raghunathan Rengaswamy include Indian Institute of Technology Bombay & Bosch.


Papers
More filters
Journal ArticleDOI
TL;DR: This three part series of papers is to provide a systematic and comparative study of various diagnostic methods from different perspectives and broadly classify fault diagnosis methods into three general categories and review them in three parts.

2,263 citations

Journal ArticleDOI
TL;DR: This final part discusses fault diagnosis methods that are based on historic process knowledge that need to be addressed for the successful design and implementation of practical intelligent supervisory control systems for the process industries.

1,902 citations

Journal ArticleDOI
TL;DR: This part of the paper reviews qualitative model representations and search strategies used in fault diagnostic systems and broadly classify them as topographic and symptomatic search techniques.

1,415 citations

Journal ArticleDOI
TL;DR: A backpropagation-based neural network was trained to identify the presence of the appropriate primitives in a trend of noisy process data and a process grammar which can utilize both contextual and non-contextual information to perform error correction and explanation generation has been developed.

163 citations

Journal ArticleDOI
TL;DR: A digraph-based approach is proposed for the problem of sensor location for identification of faults and various graph algorithms that use the developed digraph in deciding the location of sensors based on the concepts of observability and resolution are discussed.
Abstract: Fault diagnosis is an important task for the safe and optimal operation of chemical processes. Hence, this area has attracted considerable attention from researchers in the past few years. A variety of approaches have been proposed for solving this problem. All approaches for fault detection and diagnosis in some sense involve the comparison of the observed hehavior of the process to a reference model. The process behavior is inferred using sensors measuring the important variables in the process. Hence, the efficiency of the diagnostic approach depends critically on the location of sensors monitoring the process variables. The emphasis of most of the work on fault diagnosis has been more on procedures to perform diagnosis given a set of sensors and less on the actual location of sensors for efficient identification of faults. A digraph-based approach is proposed for the problem of sensor location for identification of faults. Various graph algorithms that use the developed digraph in deciding the location of sensors based on the concepts of observability and resolution are discussed. Simple examples are provided to explain the algorithms, and a complex FCCU case study is also discussed to underscore the utility of the algorithm for large flow sheets. The significance and scope of the proposed algorithms are highlighted.

158 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

01 Apr 2003
TL;DR: The EnKF has a large user group, and numerous publications have discussed applications and theoretical aspects of it as mentioned in this paper, and also presents new ideas and alternative interpretations which further explain the success of the EnkF.
Abstract: The purpose of this paper is to provide a comprehensive presentation and interpretation of the Ensemble Kalman Filter (EnKF) and its numerical implementation. The EnKF has a large user group, and numerous publications have discussed applications and theoretical aspects of it. This paper reviews the important results from these studies and also presents new ideas and alternative interpretations which further explain the success of the EnKF. In addition to providing the theoretical framework needed for using the EnKF, there is also a focus on the algorithmic formulation and optimal numerical implementation. A program listing is given for some of the key subroutines. The paper also touches upon specific issues such as the use of nonlinear measurements, in situ profiles of temperature and salinity, and data which are available with high frequency in time. An ensemble based optimal interpolation (EnOI) scheme is presented as a cost-effective approach which may serve as an alternative to the EnKF in some applications. A fairly extensive discussion is devoted to the use of time correlated model errors and the estimation of model bias.

2,975 citations

Journal ArticleDOI
TL;DR: A bibliographical review on reconfigurable fault-tolerant control systems (FTCS) is presented, with emphasis on the reconfiguring/restructurable controller design techniques.

2,455 citations