scispace - formally typeset
Search or ask a question
Author

Ragnar Larsson

Bio: Ragnar Larsson is an academic researcher from Chalmers University of Technology. The author has contributed to research in topics: Finite element method & Extended finite element method. The author has an hindex of 22, co-authored 130 publications receiving 1923 citations. Previous affiliations of Ragnar Larsson include Instituto Tecnológico de Aeronáutica.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors describe the characteristic defects found as a result of welding the more difficult, highly alloyed materials and review a number of welding processes used in the manufacture and repair of nickel alloy components.
Abstract: The continued drive for increased efficiency, performance and reduced costs for industrial gas turbine engines demands extended use of high strength-high temperature capability materials, such as nickel based superalloys. To satisfy the requirements of the component design and manufacturing engineers, these materials must be capable of being welded in a satisfactory manner. The present paper describes the characteristic defects found as a result of welding the more difficult, highly alloyed materials and reviews a number of welding processes used in the manufacture and repair of nickel alloy components. These include gas tungsten arc (GTA) and electron beam (EB) welding, laser powder deposition and friction welding. Many of the more dilute nickel based alloys are readily weldable using conventional GTA processes; however, high strength, precipitation hardened materials are prone to heat affected zone and strain age cracking defect formation. A number of factors are found to affect the propensity f...

365 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed to capture localized plastic deformation via the inclusion of regularized displacement discontinuities at element boundaries (interfaces) of the finite element subdivision, which is based on a kinematic assumption for an interface that resembles that which is pertinent to the classical shear band concept.
Abstract: It is proposed to capture localized plastic deformation via the inclusion of regularized displacement discontinuities at element boundaries (interfaces) of the finite element subdivision. The regularization is based on a kinematic assumption for an interface that resembles that which is pertinent to the classical shear band concept. As a by-product of the regularization, an intrinsic band width is introduced as a ‘constitutive’ property rather than a geometric feature of the finite element mesh. In this way the spurious mesh sensitivity, which is obtained when the displacement approximation is continuous, can be avoided. Another consequence is that the interfacial relation between the elements is derived directly from the conventional constitutive properties of the continuously deforming material. An interesting feature is that the acoustic tensor will not only play a role for diagnosing discontinuous bifurcation but will also serve as the tangent stiffness tensor of the interface (up to within a scalar factor). An analytical investigation of the behaviour of the interface is carried out and it is shown that dilatation may indeed accompany slip within a ‘shear’ band for a general plasticity model. The significance of proper mesh alignment is demonstrated for a simple problem in plane strain and plane stress. It is shown that a unique structural post-peak response (in accordance with non-linear fracture mechanics) can be achieved when the plastic softening modulus is properly related to the bandwidth. The paper concludes with a numerical simulation of the gradual development of a shear band in a soil slope.

112 citations

Journal ArticleDOI
TL;DR: A novel approach to the analysis of a developing localization zone in undrained soil considered as a mixture of a solid skeleton and fluid-filled pores, where the solid phase is considered as elastic-plastic.

92 citations

Journal ArticleDOI
TL;DR: In this paper, a new finite element derived from the classical constant strain element is proposed for localization analysis of elastic-plastic materials, which is based on the "enhanced strain" concept, extended to include regularized displacement discontinuities.
Abstract: The paper describes a new finite element, derived from the classical constant strain element, in the context of localization analysis of elastic-plastic materials. The formulation is based on the “enhanced strain” concept, which is extended to include regularized displacement discontinuities. As a result, the localization band is embedded within the element and the conventional displacement topology is preserved. The major advantage, as compared to the interelement representation, is that advanced mesh (re)alignment strategies are totally avoided and unstructured meshes are sufficient. An interesting feature of the element is that the condition for existence of an internal element discontinuity is identical to the classical condition for band-shaped localization. The element is combined with a cohesive crack model that is based on the Rankine criterion and a well-established calibration technique to achieve an objective response in the post peak softening range in terms of the dissipated (fracture) energy...

90 citations

Journal ArticleDOI
TL;DR: In this article, a general finite element approach for the modelling of fracture is presented for the geometrically non-linear case, where the kinematical representation is based on a strong discontinuity formulation in line with the concept of partition of unity for finite elements.
Abstract: A general finite element approach for the modelling of fracture is presented for the geometrically non-linear case. The kinematical representation is based on a strong discontinuity formulation in line with the concept of partition of unity for finite elements. Thus, the deformation map is defined in terms of one continuous and one discontinuous portion, considered as mutually independent, giving rise to a weak formulation of the equilibrium consisting of two coupled equations. In addition, two different fracture criteria are considered. Firstly, a principle stress criterion in terms of the material Mandel stress in conjunction with a material cohesive zone law, relating the cohesive Mandel traction to a material displacement ‘jump’ associated with the direct discontinuity. Secondly, a criterion of Griffith type is formulated in terms of the material-crack-driving force (MCDF) with the crack propagation direction determined by the direction of the force, corresponding to the direction of maximum energy release. Apart from the material modelling, the numerical treatment and aspects of computational implementation of the proposed approach is also thoroughly discussed and the paper is concluded with a few numerical examples illustrating the capabilities of the proposed approach and the connection between the two fracture criteria. Copyright © 2005 John Wiley & Sons, Ltd.

82 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The nonlocal continuum concept has emerged as an effective means for regularizing the boundary value problems with strain softening, capturing the size effects and avoiding spurious localization that gives rise to pathological mesh sensitivity in numerical computations as mentioned in this paper.
Abstract: Modeling of the evolution of distributed damage such as microcracking, void formation, and softening frictional slip necessitates strain-softening constitutive models. The nonlocal continuum concept has emerged as an effective means for regularizing the boundary value problems with strain softening, capturing the size effects and avoiding spurious localization that gives rise to pathological mesh sensitivity in numerical computations. A great variety of nonlocal models have appeared during the last two decades. This paper reviews the progress in the nonlocal models of integral type, and discusses their physical justifications, advantages, and numerical applications.

1,171 citations

Journal ArticleDOI
TL;DR: In this paper, a thermodynamically consistent damage model is proposed for the simulation of progressive delamination in composite materials under variable-mode ratio, and a constitutive equation is developed to model the initiation and propagation of delamination.

820 citations

01 Jan 2001
TL;DR: In this paper, a model for the axisymmetric growth and coalescence of small internal voids in elastoplastic solids is proposed and assessed using void cell computations.
Abstract: A model for the axisymmetric growth and coalescence of small internal voids in elastoplastic solids is proposed and assessed using void cell computations. Two contributions existing in the literature have been integrated into the enhanced model. The first is the model of Gologanu-Leblond-Devaux, extending the Gurson model to void shape effects. The second is the approach of Thomason for the onset of void coalescence. Each of these has been extended heuristically to account for strain hardening. In addition, a micromechanically-based simple constitutive model for the void coalescence stage is proposed to supplement the criterion for the onset of coalescence. The fully enhanced Gurson model depends on the flow properties of the material and the dimensional ratios of the void-cell representative volume element. Phenomenological parameters such as critical porosities are not employed in the enhanced model. It incorporates the effect of void shape, relative void spacing, strain hardening, and porosity. The effect of the relative void spacing on void coalescence, which has not yet been carefully addressed in the literature. has received special attention. Using cell model computations, accurate predictions through final fracture have been obtained for a wide range of porosity, void spacing, initial void shape, strain hardening, and stress triaxiality. These predictions have been used to assess the enhanced model. (C) 2000 Elsevier Science Ltd. All rights reserved.

519 citations

Journal ArticleDOI
TL;DR: The use of standard constitutive equations to model strong discontinuities (cracks, shear bands, slip lines, etc.) in solid mechanics analyzes is discussed in this paper.
Abstract: The paper addresses some fundamental aspects about the use of standard constitutive equations to model strong discontinuities (cracks, shear bands, slip lines, etc.) in solid mechanics analyzes. The strong discontinuity analysis is introduced as a basic tool to derive a general framework, in which different families of constitutive equations can be considered, that allows to extract some outstanding aspects of the intended analysis. In particular, a link between continuum and discrete approaches to the strain localization phenomena is obtained. Applications to standard continuum damage and elastoplastic constitutive equations are presented. Relevant aspects to be considered in the numerical simulation of the problem (tackled in Part 2 of the work) are also presented.

455 citations