scispace - formally typeset
Search or ask a question
Author

Rahele Meshkian

Bio: Rahele Meshkian is an academic researcher from Linköping University. The author has contributed to research in topics: MAX phases & MXenes. The author has an hindex of 14, co-authored 18 publications receiving 1122 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This work designs a parent 3D atomic laminate, (Mo2/3Sc1/3)2AlC, with in-plane chemical ordering, and by selectively etching the Al and Sc atoms, shows evidence for 2D Mo1.33C sheets with ordered metal divacancies and high electrical conductivities.
Abstract: The exploration of two-dimensional solids is an active area of materials discovery. Research in this area has given us structures spanning graphene to dichalcogenides, and more recently 2D transition metal carbides (MXenes). One of the challenges now is to master ordering within the atomic sheets. Herein, we present a top-down, high-yield, facile route for the controlled introduction of ordered divacancies in MXenes. By designing a parent 3D atomic laminate, (Mo2/3Sc1/3)2AlC, with in-plane chemical ordering, and by selectively etching the Al and Sc atoms, we show evidence for 2D Mo1.33C sheets with ordered metal divacancies and high electrical conductivities. At ∼1,100 F cm−3, this 2D material exhibits a 65% higher volumetric capacitance than its counterpart, Mo2C, with no vacancies, and one of the highest volumetric capacitance values ever reported, to the best of our knowledge. This structural design on the atomic scale may alter and expand the concept of property-tailoring of 2D materials. Vacancies in 2D materials can influence their properties, however controlling their formation remains a challenge. Here the authors show that selective etching of a 3D laminate with in-plane chemical ordering results in formation of MXenes with ordered divacancies, as well as elevated conductance and supercapacitance.

461 citations

Journal ArticleDOI
TL;DR: In this article, the synthesis of a two-dimensional transition metal carbide, Mo2C (MXene), obtained by immersing Mo2Ga2C thin films in hydrofluoric acid was reported.

296 citations

Journal ArticleDOI
TL;DR: The addition of yet one more element, W, to the stable of M elements known to form MAX phases, and the synthesis of a pure W-based MXene establishes that the etching of i-MAX phases is a fruitful path for creating new MXene chemistries that has hitherto been not possible.
Abstract: Structural design on the atomic level can provide novel chemistries of hybrid MAX phases and their MXenes. Herein, density functional theory is used to predict phase stability of quaternary i-MAX phases with in-plane chemical order and a general chemistry (W 2/3 M 2 1/3 ) 2 AC, where M 2 = Sc, Y (W), and A = Al, Si, Ga, Ge, In, and Sn. Of over 18 compositions probed, only two—with a monoclinic C2/c structure—are predicted to be stable: (W 2/3 Sc 1/3 ) 2 AlC and (W 2/3 Y 1/3 ) 2 AlC and indeed found to exist. Selectively etching the Al and Sc/Y atoms from these 3D laminates results in W 1.33 C-based MXene sheets with ordered metal divacancies. Using electrochemical experiments, this MXene is shown to be a new, promising catalyst for the hydrogen evolution reaction. The addition of yet one more element, W, to the stable of M elements known to form MAX phases, and the synthesis of a pure W-based MXene establishes that the etching of i-MAX phases is a fruitful path for creating new MXene chemistries that has hitherto been not possible, a fact that perforce increases the potential of tuning MXene properties for myriad applications.

198 citations

Journal ArticleDOI
TL;DR: In this paper, a MAX phase alloy with out-of-plane chemical order, Mo2ScAlC2, was presented, with a formation enthalpy of −−24meV/atom.

155 citations

Journal ArticleDOI
TL;DR: Predictive theory and verifying materials synthesis indicate a potentially large family of thermodynamically stable phases, with Kagomé-like and in-plane chemical ordering, and with incorporation of elements previously not known for MAX phases, including the common Y.
Abstract: The enigma of MAX phases and their hybrids prevails. We probe transition metal (M) alloying in MAX phases for metal size, electronegativity, and electron configuration, and discover ordering in these MAX hybrids, namely, (V2/3Zr1/3)2AlC and (Mo2/3Y1/3)2AlC. Predictive theory and verifying materials synthesis, including a judicious choice of alloying M from groups III to VI and periods 4 and 5, indicate a potentially large family of thermodynamically stable phases, with Kagome-like and in-plane chemical ordering, and with incorporation of elements previously not known for MAX phases, including the common Y. We propose the structure to be monoclinic C2/c. As an extension of the work, we suggest a matching set of novel MXenes, from selective etching of the A-element. The demonstrated structural design on simultaneous two-dimensional (2D) and 3D atomic levels expands the property tuning potential of functional materials.

138 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: More than twenty 2D carbides, nitrides and carbonitrides of transition metals (MXenes) have been synthesized and studied, and dozens more predicted to exist.
Abstract: The family of 2D transition metal carbides, carbonitrides and nitrides (collectively referred to as MXenes) has expanded rapidly since the discovery of Ti3C2 in 2011. The materials reported so far always have surface terminations, such as hydroxyl, oxygen or fluorine, which impart hydrophilicity to their surfaces. About 20 different MXenes have been synthesized, and the structures and properties of dozens more have been theoretically predicted. The availability of solid solutions, the control of surface terminations and a recent discovery of multi-transition-metal layered MXenes offer the potential for synthesis of many new structures. The versatile chemistry of MXenes allows the tuning of properties for applications including energy storage, electromagnetic interference shielding, reinforcement for composites, water purification, gas- and biosensors, lubrication, and photo-, electro- and chemical catalysis. Attractive electronic, optical, plasmonic and thermoelectric properties have also been shown. In this Review, we present the synthesis, structure and properties of MXenes, as well as their energy storage and related applications, and an outlook for future research. More than twenty 2D carbides, nitrides and carbonitrides of transition metals (MXenes) have been synthesized and studied, and dozens more predicted to exist. Highly electrically conductive MXenes show promise in electrical energy storage, electromagnetic interference shielding, electrocatalysis, plasmonics and other applications.

4,745 citations

Journal ArticleDOI
TL;DR: Two-dimensional transition metal carbides, carbonitrides, and nitrides (MXenes) were discovered in 2011 and more than 20 different compositions have been synthesized by the selective etching of MAX phase and other precursors and many more theoretically predicted as mentioned in this paper.
Abstract: Two-dimensional (2D) transition metal carbides, carbonitrides, and nitrides (MXenes) were discovered in 2011. Since the original discovery, more than 20 different compositions have been synthesized by the selective etching of MAX phase and other precursors and many more theoretically predicted. They offer a variety of different properties, making the family promising candidates in a wide range of applications, such as energy storage, electromagnetic interference shielding, water purification, electrocatalysis, and medicine. These solution-processable materials have the potential to be highly scalable, deposited by spin, spray, or dip coating, painted or printed, or fabricated in a variety of ways. Due to this promise, the amount of research on MXenes has been increasing, and methods of synthesis and processing are expanding quickly. The fast evolution of the material can also be noticed in the wide range of synthesis and processing protocols that determine the yield of delamination, as well as the quality...

2,559 citations

Journal ArticleDOI
TL;DR: The potential of MXenes for the photocatalytic degradation of organic pollutants in water, such as dye waste, is addressed, along with their promise as catalysts for ammonium synthesis from nitrogen.
Abstract: Transition metal carbides and nitrides (MXenes), a family of two-dimensional (2D) inorganic compounds, are materials composed of a few atomic layers of transition metal carbides, nitrides, or carbonitrides. Ti3C2, the first 2D layered MXene, was isolated in 2011. This material, which is a layered bulk material analogous to graphite, was derived from its 3D phase, Ti3AlC2 MAX. Since then, material scientists have either determined or predicted the stable phases of >200 different MXenes based on combinations of various transition metals such as Ti, Mo, V, Cr, and their alloys with C and N. Extensive experimental and theoretical studies have shown their exciting potential for energy conversion and electrochemical storage. To this end, we comprehensively summarize the current advances in MXene research. We begin by reviewing the structure types and morphologies and their fabrication routes. The review then discusses the mechanical, electrical, optical, and electrochemical properties of MXenes. The focus then turns to their exciting potential in energy storage and conversion. Energy storage applications include electrodes in rechargeable lithium- and sodium-ion batteries, lithium-sulfur batteries, and supercapacitors. In terms of energy conversion, photocatalytic fuel production, such as hydrogen evolution from water splitting, and carbon dioxide reduction are presented. The potential of MXenes for the photocatalytic degradation of organic pollutants in water, such as dye waste, is also addressed, along with their promise as catalysts for ammonium synthesis from nitrogen. Finally, their application potential is summarized.

1,201 citations

Journal ArticleDOI
27 Aug 2019-ACS Nano

1,114 citations

Journal ArticleDOI
01 Dec 2018
TL;DR: In this paper, a double transition metal MXene that effectively anchors single Pt atoms is reported, and exhibits superior performance and stability towards the hydrogen evolution reaction, enabling the interaction between protons and the surface functional groups of Mo2TiC2Tx.
Abstract: Single-atom catalysts offer a pathway to cost-efficient catalysis using the minimal amount of precious metals. However, preparing and keeping them stable during operation remains a challenge. Here we report the synthesis of double transition metal MXene nanosheets—Mo2TiC2Tx, with abundant exposed basal planes and Mo vacancies in the outer layers—by electrochemical exfoliation, enabled by the interaction between protons and the surface functional groups of Mo2TiC2Tx. The as-formed Mo vacancies are used to immobilize single Pt atoms, enhancing the MXene’s catalytic activity for the hydrogen evolution reaction. The developed catalyst exhibits a high catalytic ability with low overpotentials of 30 and 77 mV to achieve 10 and 100 mA cm−2 and a mass activity about 40 times greater than the commercial platinum-on-carbon catalyst. The strong covalent interactions between positively charged Pt single atoms and the MXene contribute to the exceptional catalytic performance and stability. Single-atom catalysts are very attractive due to their ability to maintain high activities at the lowest possible precious metal loading. Here, a double transition metal MXene that effectively anchors single Pt atoms is reported, and exhibits superior performance and stability towards the hydrogen evolution reaction.

1,030 citations