Author
Rahul S. Mulik
Other affiliations: Indian Institute of Technology Delhi
Bio: Rahul S. Mulik is an academic researcher from Indian Institute of Technology Roorkee. The author has contributed to research in topics: Welding & Coating. The author has an hindex of 17, co-authored 57 publications receiving 821 citations. Previous affiliations of Rahul S. Mulik include Indian Institute of Technology Delhi.
Topics: Welding, Coating, Charpy impact test, Materials science, Abrasive
Papers
More filters
TL;DR: In this article, a review of the thermal spraying techniques and current advancements in materials, mechanical properties, understand the high temperature performance, residual stress in the coating, understanding the failure mechanisms and life prediction models for coatings is presented.
Abstract: Thermal barrier coatings (TBCs) have seen considerable advancement since the initial testing and development of thermal spray coating. Thermal barrier coatings are currently been utilized in various engineering areas which include internal combustion engines, gas turbine blades of jet engines, pyrochemical reprocessing units and many more. The development of new materials, deposition techniques is targeted at improving the life of the underlying substrate. Hence, the performance of the coating plays a vital role in improving the life of substrate. The scope for advancement in thermal barrier coatings is very high and continuous efforts are being made to produce improved and durable coatings. Thermal barrier coatings have the potential to address long term and short-term problems in gas turbine, internal combustion and power generation industry. The study of thermal barrier coating material, performance and life estimation is a critical factor that should be understood to introduce any advancement. The present review gives an overview of the thermal spraying techniques and current advancements in materials, mechanical properties, understanding the high temperature performance, residual stress in the coating, understanding the failure mechanisms and life prediction models for coatings.
115 citations
TL;DR: In this paper, the authors used ultrasonic assisted magnetic abrasive finishing (UAMAF) to finish surfaces to nanometer order in a relatively short time, and the results showed that the UAMAF process has better finishing potential as compared to those obtainable by using MAF for similar processing conditions.
Abstract: Ultrasonic assisted magnetic abrasive finishing (UAMAF) integrates the use of ultrasonic vibrations and magnetic abrasive finishing (MAF) process to finish surfaces to nanometer order in a relatively short time. The present study emphasizes on the fabrication of UAMAF setup. Using this experimental setup, experimental studies have been carried out with respect to five important process parameters namely supply voltage, abrasive mesh number, rotation of magnet, abrasive weight percentage, and pulse on time (T on ) of ultrasonic vibrations selected based on literature available in the area of MAF process and ultrasonic generator controls. Percentage change in surface roughness (∆ Ra ) for AISI 52100 steel workpiece has been considered as response and unbonded SiC abrasives are used in the work. The experimental results showed that the UAMAF process has better finishing potential as compared to those obtainable by using MAF process for similar processing conditions. The surface roughness value obtained by UAMAF was as low as 22 nm within 80 s on hardened AISI 52100 steel workpiece using unbonded SiC abrasives. Scanning electron microscopy and atomic force microscopy studies were carried out to feel the surface texture produced and to identify finishing mechanism.
92 citations
TL;DR: In this paper, an electromagnet with four poles has been used which was found to give better performance in terms of achieving surface quality in lesser processing time, and the least surface roughness value obtained was as low as 51 nm in 120 s processing time on a hardened steel workpiece of 61 HRC hardness.
Abstract: Surface finish has a vital influence on functional properties such as wear resistance and power loss due to friction on most of the engineering components. Magnetic abrasive finishing (MAF) is one of the advanced finishing process in which a surface is finished by removing the material in the form of microchips by abrasive particles in the presence of magnetic field in the finishing zone. In this study an electromagnet with four poles has been used which was found to give better performance in terms of achieving surface quality in lesser processing time. Voltage, mesh number, revolutions per minute (rpm) of electromagnet, and percentage weight of abrasives have been identified as important process parameters affecting surface roughness. The experiments were planned using response surface methodology and percentage change in surface roughness (ΔRa) was considered as response. Analysis of experimental data showed that percentage change in surface roughness (ΔRa) was highly influenced by mesh number followed by percentage weight of abrasives, rpm of electromagnet, and voltage. In this study, the least surface roughness value obtained was as low as 51 nm in 120 s processing time on a hardened AISI 52100 steel workpiece of 61 HRC hardness. In order to study the surface texture produced and to identify finishing mechanism, scanning electron microscopy and atomic force microscopy were also conducted. Shearing and brittle fracture of small portion of peaks of grounded workpiece have been found to be finishing mechanisms during MAF of AISI 52100 steel.
85 citations
TL;DR: In this paper, experimental and classical mechanics-based approaches have been used to study the reinforcing capabilities of hexagonal boron nitride (h-BN) nanosheets for polyethylene (PE)-based nanocomposites.
Abstract: In this article, experimental and classical mechanics-based approaches have been used to study the reinforcing capabilities of hexagonal boron nitride (h-BN) nanosheets for polyethylene (PE)-based nanocomposites. Experiments were performed with h-BN nanoflakes and high-density polyethylene-based nanocomposites. Experimental results reported 27.0 and 64.1% improvement in tensile strength and Young’s modulus for 5 wt % h-BN loading in PE, respectively. Experimental analysis helps in developing a micro- and macrolevel understanding of the mechanical behavior of BN/PE nanocomposites, whereas the strength of these nanocomposites is governed by interfacial properties. Interfacial properties can be easily captured using atomistic simulations such as molecular dynamics. Molecular dynamics-based atomistic models were developed to study the effect of aspect ratio, weight fraction, morphology, distribution of h-BN nanosheets, and strain rate loading on mechanical properties of the nanocomposite. A reactive force fie...
67 citations
TL;DR: In this article, the microstructural evolution and mechanical properties of gas tungsten arc welded creep strength enhanced martensitic (CSEM) and austenitic stainless steel (SS) dissimilar welded joint are explored in the as welded (AW) and post weld heat treated (PWHT) conditions.
Abstract: The microstructural evolution and mechanical properties of gas tungsten arc welded creep strength enhanced martensitic (CSEM) and austenitic stainless steel (SS) dissimilar welded joint is explored in the as welded (AW) and post weld heat treated (PWHT) conditions. The as received normalized and tempered P91 steel has been welded with SS304 L by preparing a conventional groove and employing a P91 GTAW filler wire. The welded plate is subjected to PWHT at 760 °C for 120 min followed by air cooling. The P91 steel in as received condition exhibited fully martensitic (tempered) structure with lathe morphology and prior austenite grain boundaries while SS304 L have austenitic structure with twins. The heterogeneity (as-welded condition) across the welded joint were produced in terms of microstructure and mechanical properties (hardness, Charpy toughness and tensile strength). The variation in mechanical properties has been minimized after the PWHT. PWHT has observed a drastic influence on mechanical properties and microstructure of weld fusion zone and HAZ of P91 side however, remain unaffected for the SS304 L side HAZ. The strength of the welded joint have been measured 1016 ± 2.5 MPa and 906 ± 6.5 in as-welded and PWHT condition with joint efficiency of 140 % and 125 %, respectively.
61 citations
Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.
29,323 citations
Journal Article•
28,685 citations
Journal Article•
1,178 citations
TL;DR: In this paper, a review of recent advances in processing, microstructure, wear, and mechanical characterization of aluminum composites reinforced with different particles are addressed, and future scope of these composites is also briefly discussed at the end of the manuscript.
Abstract: The necessity for high performance and low-cost materials caused the researchers worldwide to switch the focus from monolithic to composite materials. In the recent pasts, a significant effort has been made in this direction to fabricate numerous combinations of metal matrix composites. Among the MMCs, aluminum-based composites are treated as the most promising structural materials due to their high corrosion, wear resistance, specific modulus, and weight for automobile and aerospace applications. Aluminum MMCs were produced by various fabrication process after considering different reinforcement particles, such as borides, carbides, oxides, nitrides, and their combinations. Aluminum MMCs revealed excellent mechanical and wear characteristics owing to the formation of stable reinforcement particles in the composites. In the present review article, recent advances in processing, microstructure, wear, and mechanical characterization of aluminum composites reinforced with different particles are addressed. The future scope of these composites is also briefly discussed at the end of the manuscript.
175 citations
TL;DR: Thorough literature review of various modern machining processes is presented and may become the ready information at one place and it may be very useful to the subsequent researchers to decide their direction of research.
Abstract: Thorough literature review of various modern machining processes is presented in this paper. The main focus is kept on the optimization aspects of various parameters of the modern machining processes and hence only such research works are included in this work in which the use of advanced optimization techniques were involved. The review period considered is from the year 2006 to 2012. Various modern machining processes considered in this work are electric discharge machining, abrasive jet machining, ultrasonic machining, electrochemical machining, laser beam machining, micro-machining, nano-finishing and various hybrid and modified versions of these processes. The review work on such a large scale was not attempted earlier by considering many processes at a time, and hence, this review work may become the ready information at one place and it may be very useful to the subsequent researchers to decide their direction of research.
139 citations