scispace - formally typeset
Search or ask a question
Author

Raia Hadsell

Bio: Raia Hadsell is an academic researcher from Google. The author has contributed to research in topics: Reinforcement learning & Artificial neural network. The author has an hindex of 42, co-authored 96 publications receiving 18125 citations. Previous affiliations of Raia Hadsell include Binghamton University & Courant Institute of Mathematical Sciences.


Papers
More filters
Proceedings ArticleDOI
17 Jun 2006
TL;DR: This work presents a method - called Dimensionality Reduction by Learning an Invariant Mapping (DrLIM) - for learning a globally coherent nonlinear function that maps the data evenly to the output manifold.
Abstract: Dimensionality reduction involves mapping a set of high dimensional input points onto a low dimensional manifold so that 'similar" points in input space are mapped to nearby points on the manifold. We present a method - called Dimensionality Reduction by Learning an Invariant Mapping (DrLIM) - for learning a globally coherent nonlinear function that maps the data evenly to the output manifold. The learning relies solely on neighborhood relationships and does not require any distancemeasure in the input space. The method can learn mappings that are invariant to certain transformations of the inputs, as is demonstrated with a number of experiments. Comparisons are made to other techniques, in particular LLE.

4,524 citations

Proceedings ArticleDOI
20 Jun 2005
TL;DR: The idea is to learn a function that maps input patterns into a target space such that the L/sub 1/ norm in the target space approximates the "semantic" distance in the input space.
Abstract: We present a method for training a similarity metric from data. The method can be used for recognition or verification applications where the number of categories is very large and not known during training, and where the number of training samples for a single category is very small. The idea is to learn a function that maps input patterns into a target space such that the L/sub 1/ norm in the target space approximates the "semantic" distance in the input space. The method is applied to a face verification task. The learning process minimizes a discriminative loss function that drives the similarity metric to be small for pairs of faces from the same person, and large for pairs from different persons. The mapping from raw to the target space is a convolutional network whose architecture is designed for robustness to geometric distortions. The system is tested on the Purdue/AR face database which has a very high degree of variability in the pose, lighting, expression, position, and artificial occlusions such as dark glasses and obscuring scarves.

3,870 citations

Posted Content
TL;DR: It is shown that it is possible to overcome the limitation of connectionist models and train networks that can maintain expertise on tasks that they have not experienced for a long time and selectively slowing down learning on the weights important for previous tasks.
Abstract: The ability to learn tasks in a sequential fashion is crucial to the development of artificial intelligence. Neural networks are not, in general, capable of this and it has been widely thought that catastrophic forgetting is an inevitable feature of connectionist models. We show that it is possible to overcome this limitation and train networks that can maintain expertise on tasks which they have not experienced for a long time. Our approach remembers old tasks by selectively slowing down learning on the weights important for those tasks. We demonstrate our approach is scalable and effective by solving a set of classification tasks based on the MNIST hand written digit dataset and by learning several Atari 2600 games sequentially.

3,026 citations

Journal ArticleDOI
TL;DR: In this paper, the authors show that it is possible to train networks that can maintain expertise on tasks that they have not experienced for a long time by selectively slowing down learning on the weights important for those tasks.
Abstract: The ability to learn tasks in a sequential fashion is crucial to the development of artificial intelligence. Until now neural networks have not been capable of this and it has been widely thought that catastrophic forgetting is an inevitable feature of connectionist models. We show that it is possible to overcome this limitation and train networks that can maintain expertise on tasks that they have not experienced for a long time. Our approach remembers old tasks by selectively slowing down learning on the weights important for those tasks. We demonstrate our approach is scalable and effective by solving a set of classification tasks based on a hand-written digit dataset and by learning several Atari 2600 games sequentially.

2,917 citations

Yann LeCun, Sumit Chopra1, Raia Hadsell1, Aurelio Ranzato1, Fu Jie Huang1 
01 Jan 2006
TL;DR: The EBM approach provides a common theoretical framework for many learning models, including traditional discr iminative and generative approaches, as well as graph-transformer networks, co nditional random fields, maximum margin Markov networks, and several manifold learning methods.
Abstract: Energy-Based Models (EBMs) capture dependencies between variables by associating a scalar energy to each configuration of the variab les. Inference consists in clamping the value of observed variables and finding config urations of the remaining variables that minimize the energy. Learning consists in finding an energy function in which observed configurations of the variables a re given lower energies than unobserved ones. The EBM approach provides a common theoretical framework for many learning models, including traditional discr iminative and generative approaches, as well as graph-transformer networks, co nditional random fields, maximum margin Markov networks, and several manifold learning methods. Probabilistic models must be properly normalized, which sometimes requires evaluating intractable integrals over the space of all poss ible variable configurations. Since EBMs have no requirement for proper normalization, this problem is naturally circumvented. EBMs can be viewed as a form of non-probabilistic factor graphs, and they provide considerably more flexibility in th e design of architectures and training criteria than probabilistic approaches .

1,022 citations


Cited by
More filters
Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations

Proceedings Article
21 Jun 2010
TL;DR: Restricted Boltzmann machines were developed using binary stochastic hidden units that learn features that are better for object recognition on the NORB dataset and face verification on the Labeled Faces in the Wild dataset.
Abstract: Restricted Boltzmann machines were developed using binary stochastic hidden units. These can be generalized by replacing each binary unit by an infinite number of copies that all have the same weights but have progressively more negative biases. The learning and inference rules for these "Stepped Sigmoid Units" are unchanged. They can be approximated efficiently by noisy, rectified linear units. Compared with binary units, these units learn features that are better for object recognition on the NORB dataset and face verification on the Labeled Faces in the Wild dataset. Unlike binary units, rectified linear units preserve information about relative intensities as information travels through multiple layers of feature detectors.

14,799 citations

Journal ArticleDOI
TL;DR: This historical survey compactly summarizes relevant work, much of it from the previous millennium, review deep supervised learning, unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks.

14,635 citations

Journal ArticleDOI
TL;DR: An object detection system based on mixtures of multiscale deformable part models that is able to represent highly variable object classes and achieves state-of-the-art results in the PASCAL object detection challenges is described.
Abstract: We describe an object detection system based on mixtures of multiscale deformable part models. Our system is able to represent highly variable object classes and achieves state-of-the-art results in the PASCAL object detection challenges. While deformable part models have become quite popular, their value had not been demonstrated on difficult benchmarks such as the PASCAL data sets. Our system relies on new methods for discriminative training with partially labeled data. We combine a margin-sensitive approach for data-mining hard negative examples with a formalism we call latent SVM. A latent SVM is a reformulation of MI--SVM in terms of latent variables. A latent SVM is semiconvex, and the training problem becomes convex once latent information is specified for the positive examples. This leads to an iterative training algorithm that alternates between fixing latent values for positive examples and optimizing the latent SVM objective function.

10,501 citations

Posted Content
TL;DR: It is shown that composition of data augmentations plays a critical role in defining effective predictive tasks, and introducing a learnable nonlinear transformation between the representation and the contrastive loss substantially improves the quality of the learned representations, and contrastive learning benefits from larger batch sizes and more training steps compared to supervised learning.
Abstract: This paper presents SimCLR: a simple framework for contrastive learning of visual representations. We simplify recently proposed contrastive self-supervised learning algorithms without requiring specialized architectures or a memory bank. In order to understand what enables the contrastive prediction tasks to learn useful representations, we systematically study the major components of our framework. We show that (1) composition of data augmentations plays a critical role in defining effective predictive tasks, (2) introducing a learnable nonlinear transformation between the representation and the contrastive loss substantially improves the quality of the learned representations, and (3) contrastive learning benefits from larger batch sizes and more training steps compared to supervised learning. By combining these findings, we are able to considerably outperform previous methods for self-supervised and semi-supervised learning on ImageNet. A linear classifier trained on self-supervised representations learned by SimCLR achieves 76.5% top-1 accuracy, which is a 7% relative improvement over previous state-of-the-art, matching the performance of a supervised ResNet-50. When fine-tuned on only 1% of the labels, we achieve 85.8% top-5 accuracy, outperforming AlexNet with 100X fewer labels.

7,951 citations