scispace - formally typeset
Search or ask a question
Author

Rainer Froese

Bio: Rainer Froese is an academic researcher from Leibniz Institute of Marine Sciences. The author has contributed to research in topics: Fishing & Fisheries management. The author has an hindex of 39, co-authored 140 publications receiving 17223 citations. Previous affiliations of Rainer Froese include University of Kiel & University of British Columbia.


Papers
More filters
Journal ArticleDOI
06 Feb 1998-Science
TL;DR: The mean trophic level of the species groups reported in Food and Agricultural Organization global fisheries statistics declined from 1950 to 1994, and results indicate that present exploitation patterns are unsustainable.
Abstract: The mean trophic level of the species groups reported in Food and Agricultural Organization global fisheries statistics declined from 1950 to 1994. This reflects a gradual transition in landings from long-lived, high trophic level, piscivorous bottom fish toward short-lived, low trophic level invertebrates and planktivorous pelagic fish. This effect, also found to be occurring in inland fisheries, is most pronounced in the Northern Hemisphere. Fishing down food webs (that is, at lower trophic levels) leads at first to increasing catches, then to a phase transition associated with stagnating or declining catches. These results indicate that present exploitation patterns are unsustainable.

4,397 citations

Journal ArticleDOI
TL;DR: A historical review, a meta-analysis, and recommendations for users about weight–length relationships, condition factors and relative weight equations are presented, indicating a tendency towards slightly positive-allometric growth (increase in relative body thickness or plumpness) in most fishes.
Abstract: Summary This study presents a historical review, a meta-analysis, and recommendations for users about weight–length relationships, condition factors and relative weight equations. The historical review traces the developments of the respective concepts. The meta-analysis explores 3929 weight–length relationships of the type W ¼ aL b for 1773 species of fishes. It shows that 82% of the variance in a plot of log a over b can be explained by allometric versus isometric growth patterns and by different body shapes of the respective species. Across species median b ¼ 3.03 is significantly larger than 3.0, thus indicating a tendency towards slightly positive-allometric growth (increase in relative body thickness or plumpness) in most fishes. The expected range of 2.5 < b < 3.5 is confirmed. Mean estimates of b outside this range are often based on only one or two weight–length relationships per species. However, true cases of strong allometric growth do exist and three examples are given. Within species, a plot of log a vs b can be used to detect outliers in weight–length relationships. An equation to calculate mean condition factors from weight–length relationships is given as Kmean ¼ 100aL b)3 . Relative weight Wrm ¼ 100W/ (amL b m ) can be used for comparing the condition of individuals across populations, where am is the geometric mean of a and bm is the mean of b across all available weight–length relationships for a given species. Twelve recommendations for proper use and presentation of weight–length relationships, condition factors and relative weight are given.

3,227 citations

Journal ArticleDOI
TL;DR: Empirical relationships are presented to estimate in fishes, asymptotic length (L∞) from maximum observed length, length at first maturity (Lm) from L∞, life span (tmax) from age at first mature (tm), and length at maximum possible yield per recruit (Lopt) from l∞ and from Lm, respectively.
Abstract: Empirical relationships are presented to estimate in fishes, asymptotic length (L∞) from maximum observed length (Lmax), length at first maturity (Lm) from L∞, life span (tmax) from age at first maturity (tm), and length at maximum possible yield per recruit (Lopt) from L∞ and from Lm, respectively. The age at Lopt is found to be a good indicator of generation time in fishes. A spreadsheet containing the various equations can be downloaded from the Internet at http://www.fishbase.org/download as popdynJFB.zip. A simple method is presented for evaluation of length–frequency data in their relationship to L∞, Lm and Lopt. This can be used to evaluate the quality of the length–frequency sample and the status of the population. Three examples demonstrate the usefulness of this method. 2000 The Fisheries Society of the British Isles

619 citations

Journal ArticleDOI
TL;DR: It is argued that such simple indicators have the potential to allow more stakeholders such as fishers, fish dealers, supermarket managers, consumers and politicians to participate in fisheries management and eventually hold and reverse the global pattern of convenience overfishing.
Abstract: Three simple fisheries indicators are presented: (i) percentage of mature fish in catch, with 100% as target; (ii) percent of specimens with optimum length in catch, with 100% as target; and (iii) percentage of ‘mega-spawners‘ in catch, with 0% as target, and 30–40% as representative of reasonable stock structure if no upper size limit exists. Application of these indicators to stocks of Gadus morhua, Sardinella aurita and Epinephelus aeneus demonstrate their usefulness. It is argued that such simple indicators have the potential to allow more stakeholders such as fishers, fish dealers, supermarket managers, consumers and politicians to participate in fisheries management and eventually hold and reverse the global pattern of convenience overfishing, which is defined here as deliberate overfishing sanctioned by official bodies who find it more convenient to risk eventual collapse of fish stocks than to risk social and political conflicts.

394 citations


Cited by
More filters
Journal ArticleDOI
27 Jul 2001-Science
TL;DR: Paleoecological, archaeological, and historical data show that time lags of decades to centuries occurred between the onset of overfishing and consequent changes in ecological communities, because unfished species of similar trophic level assumed the ecological roles of over-fished species until they too were overfished or died of epidemic diseases related to overcrowding as mentioned in this paper.
Abstract: Ecological extinction caused by overfishing precedes all other pervasive human disturbance to coastal ecosystems, including pollution, degradation of water quality, and anthropogenic climate change. Historical abundances of large consumer species were fantastically large in comparison with recent observations. Paleoecological, archaeological, and historical data show that time lags of decades to centuries occurred between the onset of overfishing and consequent changes in ecological communities, because unfished species of similar trophic level assumed the ecological roles of overfished species until they too were overfished or died of epidemic diseases related to overcrowding. Retrospective data not only help to clarify underlying causes and rates of ecological change, but they also demonstrate achievable goals for restoration and management of coastal ecosystems that could not even be contemplated based on the limited perspective of recent observations alone.

5,411 citations

Journal ArticleDOI
03 Nov 2006-Science
TL;DR: The authors analyzed local experiments, long-term regional time series, and global fisheries data to test how biodiversity loss affects marine ecosystem services across temporal and spatial scales, concluding that marine biodiversity loss is increasingly impairing the ocean's capacity to provide food, maintain water quality, and recover from perturbations.
Abstract: Human-dominated marine ecosystems are experiencing accelerating loss of populations and species, with largely unknown consequences. We analyzed local experiments, long-term regional time series, and global fisheries data to test how biodiversity loss affects marine ecosystem services across temporal and spatial scales. Overall, rates of resource collapse increased and recovery potential, stability, and water quality decreased exponentially with declining diversity. Restoration of biodiversity, in contrast, increased productivity fourfold and decreased variability by 21%, on average. We conclude that marine biodiversity loss is increasingly impairing the ocean's capacity to provide food, maintain water quality, and recover from perturbations. Yet available data suggest that at this point, these trends are still reversible.

3,672 citations

Journal ArticleDOI
TL;DR: A historical review, a meta-analysis, and recommendations for users about weight–length relationships, condition factors and relative weight equations are presented, indicating a tendency towards slightly positive-allometric growth (increase in relative body thickness or plumpness) in most fishes.
Abstract: Summary This study presents a historical review, a meta-analysis, and recommendations for users about weight–length relationships, condition factors and relative weight equations. The historical review traces the developments of the respective concepts. The meta-analysis explores 3929 weight–length relationships of the type W ¼ aL b for 1773 species of fishes. It shows that 82% of the variance in a plot of log a over b can be explained by allometric versus isometric growth patterns and by different body shapes of the respective species. Across species median b ¼ 3.03 is significantly larger than 3.0, thus indicating a tendency towards slightly positive-allometric growth (increase in relative body thickness or plumpness) in most fishes. The expected range of 2.5 < b < 3.5 is confirmed. Mean estimates of b outside this range are often based on only one or two weight–length relationships per species. However, true cases of strong allometric growth do exist and three examples are given. Within species, a plot of log a vs b can be used to detect outliers in weight–length relationships. An equation to calculate mean condition factors from weight–length relationships is given as Kmean ¼ 100aL b)3 . Relative weight Wrm ¼ 100W/ (amL b m ) can be used for comparing the condition of individuals across populations, where am is the geometric mean of a and bm is the mean of b across all available weight–length relationships for a given species. Twelve recommendations for proper use and presentation of weight–length relationships, condition factors and relative weight are given.

3,227 citations

Journal ArticleDOI
29 Jun 2000-Nature
TL;DR: If the growing aquaculture industry is to sustain its contribution to world fish supplies, it must reduce wild fish inputs in feed and adopt more ecologically sound management practices.
Abstract: Global production of farmed fish and shellfish has more than doubled in the past 15 years. Many people believe that such growth relieves pressure on ocean fisheries, but the opposite is true for some types of aquaculture. Farming carnivorous species requires large inputs of wild fish for feed. Some aquaculture systems also reduce wild fish supplies through habitat modification, wild seedstock collection and other ecological impacts. On balance, global aquaculture production still adds to world fish supplies; however, if the growing aquaculture industry is to sustain its contribution to world fish supplies, it must reduce wild fish inputs in feed and adopt more ecologically sound management practices.

2,931 citations

Journal ArticleDOI
TL;DR: The concept of resilience—the capacity to buffer change, learn and develop—is used as a framework for understanding how to sustain and enhance adaptive capacity in a complex world of rapid transformations.
Abstract: Emerging recognition of two fundamental errors under-pinning past polices for natural resource issues heralds awareness of the need for a worldwide fundamental change in thinking and in practice of environmental management. The first error has been an implicit assumption that ecosystem responses to human use are linear, predictable and controllable. The second has been an assumption that human and natural systems can be treated independently. However, evidence that has been accumulating in diverse regions all over the world suggests that natural and social systems behave in nonlinear ways, exhibit marked thresholds in their dynamics, and that social-ecological systems act as strongly coupled, complex and evolving integrated systems. This article is a summary of a report prepared on behalf of the Environmental Advisory Council to the Swedish Government, as input to the process of the World Summit on Sustainable Development (WSSD) in Johannesburg, South Africa in 26 August 4 September 2002. We use the concept of resilience—the capacity to buffer change, learn and develop—as a framework for understanding how to sustain and enhance adaptive capacity in a complex world of rapid transformations. Two useful tools for resilience-building in social-ecological systems are structured scenarios and active adaptive management. These tools require and facilitate a social context with flexible and open institutions and multi-level governance systems that allow for learning and increase adaptive capacity without foreclosing future development options.

2,905 citations