scispace - formally typeset
Search or ask a question
Author

Rainer Kneuer

Bio: Rainer Kneuer is an academic researcher from Novartis. The author has contributed to research in topics: In vivo & Experimental autoimmune encephalomyelitis. The author has an hindex of 11, co-authored 22 publications receiving 1022 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The synthesis and characterization of the near-infrared fluorescence oxazine dye AOI987 is described, which readily penetrate the intact blood-brain barrier and binds to amyloid plaques and is an attractive probe to noninvasively monitor disease progression in animal models of Alzheimer disease and to evaluate effects of potential Alzheimer disease drugs on the plaque load.
Abstract: As Alzheimer's disease pathogenesis is associated with the formation of insoluble aggregates of amyloid beta-peptide, approaches allowing the direct, noninvasive visualization of plaque growth in vivo would be beneficial for biomedical research. Here we describe the synthesis and characterization of the near-infrared fluorescence oxazine dye AOI987, which readily penetrates the intact blood-brain barrier and binds to amyloid plaques. Using near-infrared fluorescence imaging, we demonstrated specific interaction of AOI987 with amyloid plaques in APP23 transgenic mice in vivo, as confirmed by postmortem analysis of brain slices. Quantitative analysis revealed increasing fluorescence signal intensity with increasing plaque load of the animals, and significant binding of AOI987 was observed for APP23 transgenic mice aged 9 months and older. Thus, AOI987 is an attractive probe to noninvasively monitor disease progression in animal models of Alzheimer disease and to evaluate effects of potential Alzheimer disease drugs on the plaque load.

325 citations

Journal ArticleDOI
TL;DR: It is demonstrated that extracellular succinate leads to the propagation of inflammatory macrophage activation, providing translational evidence to support the development of GPR91 antagonists for the treatment of rheumatoid arthritis.
Abstract: When SUCNR1/GPR91-expressing macrophages are activated by inflammatory signals, they change their metabolism and accumulate succinate. In this study, we show that during this activation, macrophages release succinate into the extracellular milieu. They simultaneously up-regulate GPR91, which functions as an autocrine and paracrine sensor for extracellular succinate to enhance IL-1β production. GPR91-deficient mice lack this metabolic sensor and show reduced macrophage activation and production of IL-1β during antigen-induced arthritis. Succinate is abundant in synovial fluids from rheumatoid arthritis (RA) patients, and these fluids elicit IL-1β release from macrophages in a GPR91-dependent manner. Together, we reveal a GPR91/succinate-dependent feed-forward loop of macrophage activation and propose GPR91 antagonists as novel therapeutic principles to treat RA.

300 citations

Journal ArticleDOI
TL;DR: This paper aims to illustrate how micro‐computed tomography and micro‐positron emission tomography techniques may be used to obtain meaningful information for the phenotyping of transgenic mice and for the analysis of compounds in murine models of disease.
Abstract: Imaging modalities such as microcomputed tomography (micro-CT), micropositron emission tomography (micro-PET), high-resolution magnetic resonance imaging (MRI), optical imaging, and high-resolution ultrasound have become invaluable tools in preclinical pharmaceutical research. They are used to noninvasively investigate, under in vivo conditions, the rodent biology and metabolism, the disease models, and the pharmacokinetics/pharmacodynamics of drugs. Since the advantages and limitations of each approach determine its application, a small animal imaging laboratory in a pharmaceutical environment should ideally provide access to several techniques. In this chapter we illustrate how these imaging techniques may be used to obtain relevant information for the phenotyping of transgenic mice and for the analysis of compounds in murine models of disease, using Alzheimer’s disease as an example.

109 citations

Journal ArticleDOI
TL;DR: The in vivo MRI studies on tumor-bearing mice at 4.7 T proved that all dendrimeric complexes are suitable for angiography and for the study of vasculature parameters like blood volume and permeability of tumor vessels.
Abstract: Generation 4 polyamidoamine (PAMAM) and, for the first time, hyperbranched poly(ethylene imine) or polyglycerol dendrimers have been loaded with Gd3+ chelates, and the macromolecular adducts have been studied in vitro and in vivo with regard to MRI contrast agent applications. The Gd3+ chelator was either a tetraazatetracarboxylate DOTA-pBn4- or a tetraazatricarboxylate monoamide DO3A-MA3- unit. The water exchange rate was determined from a 17O NMR and 1H Nuclear Magnetic Relaxation Dispersion study for the corresponding monomer analogues [Gd(DO3A-AEM)(H2O)] and [Gd(DOTA-pBn-NH2)(H2O)]- (kex298=3.4 and 6.6x10(6) s-1, respectively), where H3DO3A-AEM is {4-[(2-acetylaminoethylcarbamoyl)methyl]-7,10-bis(carboxymethyl-1,4,7,10-tetraazacyclododec-1-yl)}-acetic acid and H4DOTA-pBn-NH2 is 2-(4-aminobenzyl)-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid. For the macromolecular complexes, variable-field proton relaxivities have been measured and analyzed in terms of local and global motional dynamics by using the Lipari-Szabo approach. At frequencies below 100 MHz, the proton relaxivities are twice as high for the dendrimers loaded with the negatively charged Gd(DOTA-pBn)- in comparison with the analogous molecule bearing the neutral Gd(DO3A-MA). We explained this difference by the different rotational dynamics: the much slower motion of Gd(DOTA-pBn)--loaded dendrimers is likely related to the negative charge of the chelate which creates more rigidity and increases the overall size of the macromolecule compared with dendrimers loaded with the neutral Gd(DO3A-MA). Attachment of poly(ethylene glycol) chains to the dendrimers does not influence relaxivity. Both hyperbranched structures were found to be as good scaffolds as regular PAMAM dendrimers in terms of the proton relaxivity of the Gd3+ complexes. The in vivo MRI studies on tumor-bearing mice at 4.7 T proved that all dendrimeric complexes are suitable for angiography and for the study of vasculature parameters like blood volume and permeability of tumor vessels.

90 citations

Journal ArticleDOI
TL;DR: The use of iron oxide and gadolinium-based particles for the noninvasive in vivo detection of macrophage infiltration into inflamed areas by magnetic resonance imaging (MRI) is addressed.
Abstract: Because macrophages play a key role on host defense, visualization of the migration of these cells is of high relevance for both diagnostic purposes and the evaluation of therapeutic interventions. The present article addresses the use of iron oxide and gadolinium-based particles for the noninvasive in vivo detection of macrophage infiltration into inflamed areas by magnetic resonance imaging (MRI). A general introduction on the functions and general characteristics of macrophages is followed by a discussion of some of the agents and acquisition schemes currently used to track the cells in vivo. Attention is then devoted to preclinical and clinical applications in the following disease areas: atherosclerosis and myocardial infarction, stroke, multiple sclerosis, rheumatoid arthritis, and kidney transplantation.

83 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This Review covers recent progress on near-infrared fluorescence imaging for preclinical animal studies and clinical diagnostics and interventions.
Abstract: This Review covers recent progress on near-infrared fluorescence imaging for preclinical animal studies and clinical diagnostics and interventions.

1,774 citations

Journal ArticleDOI
TL;DR: This Review discusses promising photonic methods that have the ability to visualize cellular and subcellular components in tissues across different penetration scales, according to the tissue depth at which they operate.
Abstract: Optical microscopy has been a fundamental tool of biological discovery for more than three centuries, but its in vivo tissue imaging ability has been restricted by light scattering to superficial investigations, even when confocal or multiphoton methods are used. Recent advances in optical and optoacoustic (photoacoustic) imaging now allow imaging at depths and resolutions unprecedented for optical methods. These abilities are increasingly important to understand the dynamic interactions of cellular processes at different systems levels, a major challenge of postgenome biology. This Review discusses promising photonic methods that have the ability to visualize cellular and subcellular components in tissues across different penetration scales. The methods are classified into microscopic, mesoscopic and macroscopic approaches, according to the tissue depth at which they operate. Key characteristics associated with different imaging implementations are described and the potential of these technologies in biological applications is discussed.

1,607 citations

Journal ArticleDOI
TL;DR: A transparent adult zebrafish is created in which either hematopoietic stem/progenitor cells or tumor cells are transplanted, serving as the ideal combination of both sensitivity and resolution for in vivo stem cell analyses.

1,192 citations

Journal ArticleDOI
TL;DR: An overview of the recent surgical intraoperational applications of indocyanine green fluorescence imaging methods, the basics of the technology, and instrumentation used is given.
Abstract: The purpose of this paper is to give an overview of the recent surgical intraoperational applications of indocyanine green fluorescence imaging methods, the basics of the technology, and instrumentation used. Well over 200 papers describing this technique in clinical setting are reviewed. In addition to the surgical applications, other recent medical applications of ICG are briefly examined.

1,000 citations

Journal ArticleDOI
TL;DR: This review summarizes the mechanisms by which the abundance of different TCA cycle metabolites controls cellular function and fate in different contexts and focuses on how these metabolites mediated signaling can affect physiology and disease.
Abstract: Mitochondria are signaling organelles that regulate a wide variety of cellular functions and can dictate cell fate. Multiple mechanisms contribute to communicate mitochondrial fitness to the rest of the cell. Recent evidence confers a new role for TCA cycle intermediates, generally thought to be important for biosynthetic purposes, as signaling molecules with functions controlling chromatin modifications, DNA methylation, the hypoxic response, and immunity. This review summarizes the mechanisms by which the abundance of different TCA cycle metabolites controls cellular function and fate in different contexts. We will focus on how these metabolites mediated signaling can affect physiology and disease. Mitochondrial metabolites contribute to more than biosynthesis, and it is clear that they influence multiple cellular functions in a variety of ways. Here, Martinez-Reyes and Chandel review key metabolites and describe their effects on processes involved in physiology and disease including chromatin dynamics, immunity, and hypoxia.

957 citations