scispace - formally typeset
Search or ask a question
Author

Rajaa Boujemaa

Bio: Rajaa Boujemaa is an academic researcher from Centre national de la recherche scientifique. The author has contributed to research in topics: Arp2/3 complex & MDia1. The author has an hindex of 4, co-authored 4 publications receiving 1517 citations.

Papers
More filters
Journal ArticleDOI
07 Oct 1999-Nature
TL;DR: Pure components of the actin cytoskeleton are used to reconstitute sustained movement in Listeria and Shigella in vitro and have implications for the understanding of the mechanism of actin-based motility in cells.
Abstract: Actin polymerization is essential for cell locomotion and is thought to generate the force responsible for cellular protrusions. The Arp2/3 complex is required to stimulate actin assembly at the leading edge in response to signalling. The bacteria Listeria and Shigella bypass the signalling pathway and harness the Arp2/3 complex to induce actin assembly and to propel themselves in living cells. However, the Arp2/3 complex alone is insufficient to promote movement. Here we have used pure components of the actin cytoskeleton to reconstitute sustained movement in Listeria and Shigella in vitro. Actin-based propulsion is driven by the free energy released by ATP hydrolysis linked to actin polymerization, and does not require myosin. In addition to actin and activated Arp2/3 complex, actin depolymerizing factor (ADF, or cofilin) and capping protein are also required for motility as they maintain a high steady-state level of G-actin, which controls the rate of unidirectional growth of actin filaments at the surface of the bacterium. The movement is more effective when profilin, alpha-actinin and VASP (for Listeria) are also included. These results have implications for our understanding of the mechanism of actin-based motility in cells.

959 citations

Journal ArticleDOI
TL;DR: It is shown that the activated Arp2/3 complex interacts with the barbed ends of filaments to initiate barbed-end branching, which quantitatively accounts for polymerization kinetics and for the length correlation of the branches offilaments observed by electron microscopy.
Abstract: The Arp2/3 complex is an essential regulator of actin polymerization in response to signalling and generates a dendritic array of filaments in lamellipodia. Here we show that the activated Arp2/3 complex interacts with the barbed ends of filaments to initiate barbed-end branching. Barbed-end branching by Arp2/3 quantitatively accounts for polymerization kinetics and for the length correlation of the branches of filaments observed by electron microscopy. Filament branching is visualized at the surface of Listeria in a reconstituted motility assay. The functional antagonism between the Arp2/3 complex and capping proteins is essential in the maintenance of the steady state of actin assembly and actin-based motility.

254 citations

Journal ArticleDOI
TL;DR: It is shown that Grb2 may activate Arp2/3 complex-mediated actin polymerization downstream from the receptor tyrosine kinase signaling pathway and shortens the delay preceding the onset of Escherichia coli actin-based reconstituted movement.

228 citations

Journal ArticleDOI
15 Sep 2000-Cell
TL;DR: A novel actin binding protein, Ciboulot (Cib), is characterized, which plays a major role in axonal growth during Drosophila brain metamorphosis and enhances actin-based motility in vitro.

114 citations


Cited by
More filters
Journal ArticleDOI
21 Feb 2003-Cell
TL;DR: A core set of proteins including actin, Arp2/3 complex, profilin, capping protein, and ADF/cofilin can reconstitute the process in vitro, and mathematical models of the constituent reactions predict the rate of motion.

3,793 citations

Journal ArticleDOI
TL;DR: The molecular determinants of Listeria virulence and their mechanism of action are described and the current knowledge on the pathophysiology of listeriosis and the cell biology and host cell responses to Listersia infection is summarized.
Abstract: The gram-positive bacterium Listeria monocytogenes is the causative agent of listeriosis, a highly fatal opportunistic foodborne infection. Pregnant women, neonates, the elderly, and debilitated or immunocompromised patients in general are predominantly affected, although the disease can also develop in normal individuals. Clinical manifestations of invasive listeriosis are usually severe and include abortion, sepsis, and meningoencephalitis. Listeriosis can also manifest as a febrile gastroenteritis syndrome. In addition to humans, L. monocytogenes affects many vertebrate species, including birds. Listeria ivanovii, a second pathogenic species of the genus, is specific for ruminants. Our current view of the pathophysiology of listeriosis derives largely from studies with the mouse infection model. Pathogenic listeriae enter the host primarily through the intestine. The liver is thought to be their first target organ after intestinal translocation. In the liver, listeriae actively multiply until the infection is controlled by a cell-mediated immune response. This initial, subclinical step of listeriosis is thought to be common due to the frequent presence of pathogenic L. monocytogenes in food. In normal indivuals, the continual exposure to listerial antigens probably contributes to the maintenance of anti-Listeria memory T cells. However, in debilitated and immunocompromised patients, the unrestricted proliferation of listeriae in the liver may result in prolonged low-level bacteremia, leading to invasion of the preferred secondary target organs (the brain and the gravid uterus) and to overt clinical disease. L. monocytogenes and L. ivanovii are facultative intracellular parasites able to survive in macrophages and to invade a variety of normally nonphagocytic cells, such as epithelial cells, hepatocytes, and endothelial cells. In all these cell types, pathogenic listeriae go through an intracellular life cycle involving early escape from the phagocytic vacuole, rapid intracytoplasmic multiplication, bacterially induced actin-based motility, and direct spread to neighboring cells, in which they reinitiate the cycle. In this way, listeriae disseminate in host tissues sheltered from the humoral arm of the immune system. Over the last 15 years, a number of virulence factors involved in key steps of this intracellular life cycle have been identified. This review describes in detail the molecular determinants of Listeria virulence and their mechanism of action and summarizes the current knowledge on the pathophysiology of listeriosis and the cell biology and host cell responses to Listeria infection. This article provides an updated perspective of the development of our understanding of Listeria pathogenesis from the first molecular genetic analyses of virulence mechanisms reported in 1985 until the start of the genomic era of Listeria research.

2,139 citations

Journal ArticleDOI
27 Nov 2009-Science
TL;DR: Comparisons of quantitative measurements of reactions in live cells with computer simulations of mathematical models will help generate meaningful insights and present a summary of the key questions in the field.
Abstract: The protein actin forms filaments that provide cells with mechanical support and driving forces for movement. Actin contributes to biological processes such as sensing environmental forces, internalizing membrane vesicles, moving over surfaces, and dividing the cell in two. These cellular activities are complex; they depend on interactions of actin monomers and filaments with numerous other proteins. Here, we present a summary of the key questions in the field and suggest how those questions might be answered. Understanding actin-based biological phenomena will depend on identifying the participating molecules and defining their molecular mechanisms. Comparisons of quantitative measurements of reactions in live cells with computer simulations of mathematical models will also help generate meaningful insights.

1,765 citations

Journal ArticleDOI
TL;DR: How motile cells regulate actin filament assembly at their leading edge is reviewed, including how Arp2/3 complex is incorporated into the network, and new filaments are capped rapidly, so that activated Arp1/2 complex must be supplied continuously to keep the network growing.
Abstract: We review how motile cells regulate actin filament assembly at their leading edge. Activation of cell surface receptors generates signals (including activated Rho family GTPases) that converge on integrating proteins of the WASp family (WASp, N-WASP, and Scar/WAVE). WASP family proteins stimulate Arp2/3 complex to nucleate actin filaments, which grow at a fixed 70 degrees angle from the side of pre-existing actin filaments. These filaments push the membrane forward as they grow at their barbed ends. Arp2/3 complex is incorporated into the network, and new filaments are capped rapidly, so that activated Arp2/3 complex must be supplied continuously to keep the network growing. Hydrolysis of ATP bound to polymerized actin followed by phosphate dissociation marks older filaments for depolymerization by ADF/cofilins. Profilin catalyzes exchange of ADP for ATP, recycling actin back to a pool of unpolymerized monomers bound to profilin and thymosin-beta 4 that is poised for rapid elongation of new barbed ends.

1,516 citations

Journal ArticleDOI
TL;DR: The feedback loop between biochemical and mechanical properties of actin organization at the molecular level in vitro is described and this knowledge is integrated into the current understanding of cellular actin organizations and its physiological roles.
Abstract: Tight coupling between biochemical and mechanical properties of the actin cytoskeleton drives a large range of cellular processes including polarity establishment, morphogenesis, and motility. This is possible because actin filaments are semi-flexible polymers that, in conjunction with the molecular motor myosin, can act as biological active springs or "dashpots" (in laymen's terms, shock absorbers or fluidizers) able to exert or resist against force in a cellular environment. To modulate their mechanical properties, actin filaments can organize into a variety of architectures generating a diversity of cellular organizations including branched or crosslinked networks in the lamellipodium, parallel bundles in filopodia, and antiparallel structures in contractile fibers. In this review we describe the feedback loop between biochemical and mechanical properties of actin organization at the molecular level in vitro, then we integrate this knowledge into our current understanding of cellular actin organization and its physiological roles.

1,128 citations