Author

# Rajat Mittal

Other affiliations: Qualcomm, Stanford University, University of Washington ...read more

Bio: Rajat Mittal is an academic researcher from Johns Hopkins University. The author has contributed to research in topics: Vortex & Immersed boundary method. The author has an hindex of 61, co-authored 334 publications receiving 17041 citations. Previous affiliations of Rajat Mittal include Qualcomm & Stanford University.

##### Papers published on a yearly basis

##### Papers

More filters

••

TL;DR: The term immersed boundary (IB) method is used to encompass all such methods that simulate viscous flows with immersed (or embedded) boundaries on grids that do not conform to the shape of these boundaries.

Abstract: The term “immersed boundary method” was first used in reference to a method developed by Peskin (1972) to simulate cardiac mechanics and associated blood flow. The distinguishing feature of this method was that the entire simulation was carried out on a Cartesian grid, which did not conform to the geometry of the heart, and a novel procedure was formulated for imposing the effect of the immersed boundary (IB) on the flow. Since Peskin introduced this method, numerous modifications and refinements have been proposed and a number of variants of this approach now exist. In addition, there is another class of methods, usually referred to as “Cartesian grid methods,” which were originally developed for simulating inviscid flows with complex embedded solid boundaries on Cartesian grids (Berger & Aftosmis 1998, Clarke et al. 1986, Zeeuw & Powell 1991). These methods have been extended to simulate unsteady viscous flows (Udaykumar et al. 1996, Ye et al. 1999) and thus have capabilities similar to those of IB methods. In this review, we use the term immersed boundary (IB) method to encompass all such methods that simulate viscous flows with immersed (or embedded) boundaries on grids that do not conform to the shape of these boundaries. Furthermore, this review focuses mainly on IB methods for flows with immersed solid boundaries. Application of these and related methods to problems with liquid-liquid and liquid-gas boundaries was covered in previous reviews by Anderson et al. (1998) and Scardovelli & Zaleski (1999). Consider the simulation of flow past a solid body shown in Figure 1a. The conventional approach to this would employ structured or unstructured grids that conform to the body. Generating these grids proceeds in two sequential steps. First, a surface grid covering the boundaries b is generated. This is then used as a boundary condition to generate a grid in the volume f occupied by the fluid. If a finite-difference method is employed on a structured grid, then the differential form of the governing equations is transformed to a curvilinear coordinate system aligned with the grid lines (Ferziger & Peric 1996). Because the grid conforms to the surface of the body, the transformed equations can then be discretized in the

3,184 citations

••

TL;DR: A sharp interface immersed boundary method for simulating incompressible viscous flow past three-dimensional immersed bodies is described, with special emphasis on the immersed boundary treatment for stationary and moving boundaries.

1,013 citations

••

TL;DR: A Cartesian grid method has been developed for simulating two-dimensional unsteady, viscous, incompressible flows with complex immersed boundaries and the ability of the solver to simulate flows with very complicated immersed boundaries is demonstrated.

811 citations

••

TL;DR: A Sharp Interface Cartesian Grid Method for Simulating Flows with Complex Moving Boundaries is presented.

500 citations

01 Jan 2001

TL;DR: A Sharp Interface Cartesian Grid Method for Simulating Flows with Complex Moving Boundaries H. Mittal, R. Udaykumar, P. Rampunggoon, and A. Khanna.

Abstract: A Sharp Interface Cartesian Grid Method for Simulating Flows with Complex Moving Boundaries H. S. Udaykumar,∗ R. Mittal,† P. Rampunggoon,‡ and A. Khanna∗ ∗Department of Mechanical Engineering, University of Iowa, Iowa City, Iowa 52242; †Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052; and ‡Department of Mechanical Engineering, University of Florida, Gainesville, Florida 32611 E-mail: mittal@seas.gwu.edu

486 citations

##### Cited by

More filters

Microsoft

^{1}TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.

Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

01 Jan 2016

TL;DR: The table of integrals series and products is universally compatible with any devices to read and is available in the book collection an online access to it is set as public so you can get it instantly.

Abstract: Thank you very much for downloading table of integrals series and products. Maybe you have knowledge that, people have look hundreds times for their chosen books like this table of integrals series and products, but end up in harmful downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some harmful virus inside their laptop. table of integrals series and products is available in our book collection an online access to it is set as public so you can get it instantly. Our book servers saves in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the table of integrals series and products is universally compatible with any devices to read.

4,085 citations

••

TL;DR: A review of wake vortex dynamics can be found in this article, with a focus on the three-dimensional aspects of nominally two-dimensional wake flows, as well as the discovery of several new phenomena in wakes.

Abstract: Since the review of periodic flow phenomena by Berger & Wille (1972) in this journal, over twenty years ago, there has been a surge of activity regarding bluff body wakes. Many of the questions regarding wake vortex dynamics from the earlier review have now been answered in the literature, and perhaps an essential key to our new understandings (and indeed to new questions) has been the recent focus, over the past eight years, on the three-dimensional aspects of nominally two-dimensional wake flows. New techniques in experiment, using laser-induced fluorescence and PIV (Particle-Image-Velocimetry), are vigorously being applied to wakes, but interestingly, several of the new discoveries have come from careful use of classical methods. There is no question that strides forward in understanding of the wake problem are being made possible by ongoing three- dimensional direct numerical simulations, as well as by the surprisingly successful use of analytical modeling in these flows, and by secondary stability analyses. These new developments, and the discoveries of several new phenomena in wakes, are presented in this review.

3,206 citations

••

TL;DR: The term immersed boundary (IB) method is used to encompass all such methods that simulate viscous flows with immersed (or embedded) boundaries on grids that do not conform to the shape of these boundaries.

Abstract: The term “immersed boundary method” was first used in reference to a method developed by Peskin (1972) to simulate cardiac mechanics and associated blood flow. The distinguishing feature of this method was that the entire simulation was carried out on a Cartesian grid, which did not conform to the geometry of the heart, and a novel procedure was formulated for imposing the effect of the immersed boundary (IB) on the flow. Since Peskin introduced this method, numerous modifications and refinements have been proposed and a number of variants of this approach now exist. In addition, there is another class of methods, usually referred to as “Cartesian grid methods,” which were originally developed for simulating inviscid flows with complex embedded solid boundaries on Cartesian grids (Berger & Aftosmis 1998, Clarke et al. 1986, Zeeuw & Powell 1991). These methods have been extended to simulate unsteady viscous flows (Udaykumar et al. 1996, Ye et al. 1999) and thus have capabilities similar to those of IB methods. In this review, we use the term immersed boundary (IB) method to encompass all such methods that simulate viscous flows with immersed (or embedded) boundaries on grids that do not conform to the shape of these boundaries. Furthermore, this review focuses mainly on IB methods for flows with immersed solid boundaries. Application of these and related methods to problems with liquid-liquid and liquid-gas boundaries was covered in previous reviews by Anderson et al. (1998) and Scardovelli & Zaleski (1999). Consider the simulation of flow past a solid body shown in Figure 1a. The conventional approach to this would employ structured or unstructured grids that conform to the body. Generating these grids proceeds in two sequential steps. First, a surface grid covering the boundaries b is generated. This is then used as a boundary condition to generate a grid in the volume f occupied by the fluid. If a finite-difference method is employed on a structured grid, then the differential form of the governing equations is transformed to a curvilinear coordinate system aligned with the grid lines (Ferziger & Peric 1996). Because the grid conforms to the surface of the body, the transformed equations can then be discretized in the

3,184 citations